1
|
Rodríguez MD, Morris JA, Bardsley OJ, Matthews HR, Huang CLH. Nernst-Planck-Gaussian finite element modelling of Ca 2+ electrodiffusion in amphibian striated muscle transverse tubule-sarcoplasmic reticular triadic junctional domains. Front Physiol 2024; 15:1468333. [PMID: 39703671 PMCID: PMC11655509 DOI: 10.3389/fphys.2024.1468333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/22/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Intracellular Ca2+ signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca2+ electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca2+] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions. Materials and methods Finite element computational analysis characterised the formation and steady state and kinetic properties of the Ca2+ microdomains using established empirical physiological and anatomical values. It progressively incorporated Fick diffusion and Nernst-Planck electrodiffusion gradients, K+, Cl-, and Donnan protein, and calmodulin (CaM)-mediated Ca2+ buffering. It solved for temporal-spatial patterns of free and buffered Ca2+, Gaussian charge differences, and membrane potential changes, following Ca2+ release into the T-SR junction. Results Computational runs using established low and high Ca2+ diffusibility (D Ca2+) limits both showed that voltages arising from intracytosolic total [Ca2+] gradients and the counterions little affected microdomain formation, although elevated D Ca2+ reduced attained [Ca2+] and facilitated its kinetics. Contrastingly, adopting known cytosolic CaM concentrations and CaM-Ca2+ affinities markedly increased steady-state free ([Ca2+]free) and total ([Ca2+]), albeit slowing microdomain formation, all to extents reduced by high D Ca2+. However, both low and high D Ca2+ yielded predictions of similar, physiologically effective, [Ca2+-CaM]. This Ca2+ trapping by the relatively immobile CaM particularly increased [Ca2+] at the junction centre. [Ca2+]free, [Ca2+-CaM], [Ca2+], and microdomain kinetics all depended on both CaM-Ca2+ affinity and D Ca2+. These changes accompanied only small Gaussian (∼6 mV) and surface charge (∼1 mV) effects on tubular transmembrane potential at either D Ca2+. Conclusion These physical predictions of T-SR Ca2+ microdomain formation and properties are compatible with the microdomain roles in Ca2+ and Ca2+-CaM-mediated signalling but limited the effects on tubular transmembrane potentials. CaM emerges as a potential major regulator of both the kinetics and the extent of microdomain formation. These possible cellular Ca2+ signalling roles are discussed in relation to possible feedback modulation processes sensitive to the μM domain but not nM bulk cytosolic, [Ca2+]free, and [Ca2+-CaM], including ryanodine receptor-mediated SR Ca2+ release; Na+, K+, and Cl- channel-mediated membrane excitation and stabilisation; and Na+/Ca2+ exchange transport.
Collapse
Affiliation(s)
- Marco D. Rodríguez
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Joshua A. Morris
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Oliver J. Bardsley
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Hugh R. Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
3
|
Aulia F, Matsuba H, Adachi S, Yamada T, Nakase I, Nii T, Mori T, Katayama Y, Kishimura A. Effective design of PEGylated polyion complex (PIC) nanoparticles for enhancing PIC internalisation in cells utilising block copolymer combinations with mismatched ionic chain lengths. J Mater Chem B 2024; 12:1826-1836. [PMID: 38305408 DOI: 10.1039/d3tb02049e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In nanomedicine, PEGylation of nanomaterials poses a dilemma since it inhibits their interaction with target cells and enables their retention in target tissues despite its biocompatibility and nonspecific internalisation suppression. PEGylated polypeptide-based polyion complexes (PICs) are fabricated via the self-assembly of PEGylated aniomers and homocatiomers based on electrostatic interactions. We propose that various parameters like block copolymer design and PIC domain characteristics can enhance the cell-PEGylated PIC interactions. Remarkably, the properties of the PIC domain were tuned by the matched/mismatched ionomer chain lengths, PIC domain crosslinking degree, chemical modification of cationic species after crosslinking, PIC morphologies (vesicles/micelles) and polyethylene glycol (PEG) chain lengths. Cellular internalisation of the prepared PICs was evaluated using HeLa cells. Consequently, mismatched ionomer chain lengths and vesicle morphology enhanced cell-PIC interactions, and the states of ion pairing, particularly cationic residues, affected the internalisation behaviours of PICs via acetylation or guanidinylation of amino groups on catiomers. This treatment attenuated the cell-PIC interactions, possibly because of reduced interaction of PICs with negatively charged species on the cell-surface, glycosaminoglycans. Moreover, morphology and PEG length were correlated with PIC internalisation, in which PICs with longer and denser PEG were internalised less effectively. Cell line dependency was tested using RAW 264.7 macrophage cells; PIC recognition could be maintained after capping amino groups on catiomers, indicating that the remaining anionic groups were still effectively recognised by the scavenger receptors of macrophages. Our strategy for tuning the physicochemical properties of the PEGylated PIC nanocarriers is promising for overcoming the PEG issue.
Collapse
Affiliation(s)
- Fadlina Aulia
- Graduate School of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroaki Matsuba
- Graduate School of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shoya Adachi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Yamada
- Graduate School of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ikuhiko Nakase
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Teruki Nii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Advanced Medical Open Innovation, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, Taiwan, 32023, ROC
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Malfanti A, Sami H, Balasso A, Marostica G, Arpac B, Mastrotto F, Mantovani G, Cola E, Anton M, Caliceti P, Ogris M, Salmaso S. Control of cell penetration enhancer shielding and endosomal escape-kinetics crucial for efficient and biocompatible siRNA delivery. J Control Release 2023; 363:101-113. [PMID: 37722420 DOI: 10.1016/j.jconrel.2023.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Although cationic liposomes are efficient carriers for nucleic acid delivery, their toxicity often hampers the clinical translation. Polyethylene glycol (PEG) coating has been largely used to improve their stability and reduce toxicity. Nevertheless, it has been found to decrease the transfection process. In order to exploit the advantages of cationic liposomes and PEG decoration for nucleic acid delivery, liposomes decorated with tetraArg-[G-1]-distearoyl glycerol (Arg4-DAG) dendronic oligo-cationic lipid enhancer (OCE) and PEG-lipid have been investigated. Non decorated or OCE-decorated lipoplexes (OCEfree-LPX and OCE-LPX, respectively) were obtained by lipid film hydration using oligonucleotide (ON) solutions. PEG and OCE/PEG decorated lipoplexes (PEG-OCEfree-LPX and PEG-OCE-LPX, respectively) were obtained by post-insertion of 2 or 5 kDa PEG-DSPE on preformed lipoplexes. The OCE decoration yielded lipoplexes with size of about 240 nm, 84% loading efficiency at 10 N/P ratio, ten times higher than OCEfree-LPX, and prevented the ON release when incubated with physiological heparin concentration or with plasma. The PEG decoration reduced the zeta potential, enhanced the lipoplex stability in serum and decreased both hemolysis and cytotoxicity, while it did not affect the lipoplex size and ON loading. With respect to OCEfree-LPX, the OCE-LPX remarkably associated with cells and were taken up by different cancer cell lines (HeLa and MDA-MB-231). Interestingly, 2 or 5 kDa PEG decoration did not reduce either the cell interaction or the cell up-take of the cationic lipoplexes. With siRNA as a payload, OCE enabled efficient internalization, but endosomal release was hampered. Post-transfection treatment with the lysosomotropic drug chloroquine allowed to identify the optimal time point for endosomal escape. Chloroquine treatment after 12 to 20 h of LPX pre-incubation enabled siRNA mediated target knockdown indicating that this is the time window of endo-lysosomal processing. This indicates that OCE can protect siRNA from lysosomal degradation for up to 20 h, as shown by these rescue experiments.
Collapse
Affiliation(s)
- Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Haider Sami
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Giulia Marostica
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Busra Arpac
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | | | - Elisa Cola
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Martina Anton
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Manfred Ogris
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria.
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy.
| |
Collapse
|
5
|
Gupta P, Rathi P, Gupta R, Baldi H, Coquerel Q, Debnath A, Derami HG, Raman B, Singamaneni S. Neuronal maturation-dependent nano-neuro interaction and modulation. NANOSCALE HORIZONS 2023; 8:1537-1555. [PMID: 37672212 PMCID: PMC10615777 DOI: 10.1039/d3nh00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Nanotechnology-enabled neuromodulation is a promising minimally-invasive tool in neuroscience and engineering for both fundamental studies and clinical applications. However, the nano-neuro interaction at different stages of maturation of a neural network and its implications for the nano-neuromodulation remain unclear. Here, we report heterogeneous to homogeneous transformation of neuromodulation in a progressively maturing neural network. Utilizing plasmonic-fluors as ultrabright fluorescent nanolabels, we reveal that negative surface charge of nanoparticles renders selective nano-neuro interaction with a strong correlation between the maturation stage of the individual neurons in the neural network and the density of the nanoparticles bound on the neurons. In stark contrast to homogeneous neuromodulation in a mature neural network reported so far, the maturation-dependent density of the nanoparticles bound to neurons in a developing neural network resulted in a heterogeneous optical neuromodulation (i.e., simultaneous excitation and inhibition of neural network activity). This study advances our understanding of nano-neuro interactions and nano-neuromodulation with potential applications in minimally-invasive technologies for treating neuronal disorders in parts of the mammalian brain where neurogenesis persists throughout aging.
Collapse
Affiliation(s)
- Prashant Gupta
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Priya Rathi
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Harsh Baldi
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Quentin Coquerel
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Avishek Debnath
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Hamed Gholami Derami
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
6
|
Sharma R, Lalhall A, Puri S, Wangoo N. Design of Fmoc-Phenylalanine Nanofibrillar Hydrogel and Mechanistic Studies of Its Antimicrobial Action against Both Gram-Positive and Gram-Negative Bacteria. ACS APPLIED BIO MATERIALS 2023; 6:494-506. [PMID: 36700824 DOI: 10.1021/acsabm.2c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In pursuit of efficient antimicrobial agents, biomaterials such as hydrogels have drawn a considerable amount of attention due to their numerous advantages such as a high degree of hydration, biocompatibility, stability, and direct application at an infectious site. Particularly, biomaterials such as hydrogels based on Fmoc-protected peptides and amino acids have proven to be immensely advantageous. Such biomaterials can undergo gelation by simple pH modulation and can be used for various biological applications. Keeping this in mind, in this work, we reported the synthesis of Fmoc-phenylalanine (Fmoc-F)-based hydrogels using trisodium citrate as a pH modulator and compared them with the previously reported pH modulator glucono-δ-lactone. The gels were compared using various characterization techniques such as rheometry, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), small angle X-ray scattering (SAXS), FT-IR, thioflavin T (ThT) binding assay, and zeta potential studies. These studies highlighted the role of pH modulators in affecting various parameters such as the ability to alter the zeta potential of the nanofibrils, improve their bactericidal action, reduce the amyloidic characters, shift the lattice packing from amorphous to crystalline, and introduce fluorescence and thermoreversibility. Interestingly, this is the first report where the Fmoc-F-based hydrogel has been shown to be effective against Gram-negative bacteria along with Gram-positive bacteria as well. Additionally, the mechanism of antimicrobial action was investigated using docking and antioxidant studies.
Collapse
Affiliation(s)
- Rohit Sharma
- Centre for Stem Cell and Tissue Engineering, Panjab University, Chandigarh 160014, India
| | - Alisha Lalhall
- Centre for Nanoscience and Nanotechnology, Panjab University, Chandigarh 160014, India.,Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Chandigarh 160014, India
| | - Sanjeev Puri
- Centre for Stem Cell and Tissue Engineering, Panjab University, Chandigarh 160014, India.,Department of Biotechnology, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Chandigarh 160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Chandigarh 160014, India
| |
Collapse
|
7
|
|
8
|
The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol 2022; 224:533-543. [DOI: 10.1016/j.ijbiomac.2022.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/01/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
9
|
Ma B, Hu G, Guo S, Zeng Q, Chen Y, Hwan Oh D, Jin Y, Fu X. Use of Peptide-Modified Nanoparticles as a Bacterial Cell Targeting Agent for Enhanced Antibacterial Activity and Other Biomedical Applications. Food Res Int 2022; 161:111638. [DOI: 10.1016/j.foodres.2022.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
|
10
|
Caniglia G, Tezcan G, Meloni GN, Unwin PR, Kranz C. Probing and Visualizing Interfacial Charge at Surfaces in Aqueous Solution. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:247-267. [PMID: 35259914 DOI: 10.1146/annurev-anchem-121521-122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface charge density and distribution play an important role in almost all interfacial processes, influencing, for example, adsorption, colloidal stability, functional material activity, electrochemical processes, corrosion, nanoparticle toxicity, and cellular processes such as signaling, absorption, and adhesion. Understanding the heterogeneity in, and distribution of, surface and interfacial charge is key to elucidating the mechanisms underlying reactivity, the stability of materials, and biophysical processes. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are highly suitable for probing the material/electrolyte interface at the nanoscale through recent advances in probe design, significant instrumental (hardware and software) developments, and the evolution of multifunctional imaging protocols. Here, we assess the capability of AFM and SICM for surface charge mapping, covering the basic underpinning principles alongside experimental considerations. We illustrate and compare the use of AFM and SICM for visualizing surface and interfacial charge with examples from materials science, geochemistry, and the life sciences.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| | - Gözde Tezcan
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, United Kingdom;
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany;
| |
Collapse
|
11
|
Li Y, Jin R, Xu L, Jiang D, Chen HY, Jiang D. Electrochemically Imaging the Response of Ion-Selective Membranes with an Ultralow Detection Limit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14097-14102. [PMID: 35298148 DOI: 10.1021/acsami.2c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of ion-selective membranes for the selective response of a particular ion has been studied for many years; however, imaging the response of the membrane with a low detection limit is challenging. Here, high spatial-resolution electrochemical imaging of this response down to picomolar is achieved using scanning ion conductive microscopy. The detection strategy relies on the exclusion of a small amount of counter ions from the membrane in the presence of a low concentration of target ions in the solution. These excluded counter ions are adsorbed at the membrane-solution interface, leading to more positive charges at the surface. The resultant elevation of the ionic current in the approach curve behaves as the response for the target ions down to 10-11 M, which is much more sensitive than that using potentiometric measurement. The constant-current scanning of the membrane exhibits the fluctuation of the apparent surface height that is correlated with the ionic concentration, permitting the imaging of the response at the nanoscale. The achievement of highly sensitive and spatial-resolution imaging for the ionic response enable the collection of spatial response at the ion-selective membrane, which will greatly advance the study of ion-selective electrodes.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Rong Jin
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Lingfang Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital Chongqing Medical University, Chongqing 400010, China
| | - Depeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital Chongqing Medical University, Chongqing 400010, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
12
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA. A Novel Green Preparation of Ag/RGO Nanocomposites with Highly Effective Anticancer Performance. Polymers (Basel) 2021; 13:3350. [PMID: 34641166 PMCID: PMC8512371 DOI: 10.3390/polym13193350] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022] Open
Abstract
The efficacy of current cancer therapies is limited due to several factors, including drug resistance and non-specific toxic effects. Due to their tuneable properties, silver nanoparticles (Ag NPs) and graphene derivative-based nanomaterials are now providing new hope to treat cancer with minimum side effects. Here, we report a simple, inexpensive, and eco-friendly protocol for the preparation of silver-reduced graphene oxide nanocomposites (Ag/RGO NCs) using orange peel extract. This work was planned to curtail the use of toxic chemicals, and improve the anticancer performance and cytocompatibility of Ag/RGO NCs. Aqueous extract of orange peels is abundant in phytochemicals that act as reducing and stabilizing agents for the green synthesis of Ag NPs and Ag/RGO NCs from silver nitrate and graphene oxide (GO). Moreover, the flavonoid present in orange peel is a potent anticancer agent. Green-prepared Ag NPs and Ag/RGO NCs were characterized by UV-visible spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS). The results of the anticancer study demonstrated that the killing potential of Ag/RGO NCs against human breast cancer (MCF7) and lung cancer (A549) cells was two-fold that of pure Ag NPs. Moreover, the cytocompatibility of Ag/RGO NCs in human normal breast epithelial (MCF10A) cells and normal lung fibroblasts (IMR90) was higher than that of pure Ag NPs. This mechanistic study indicated that Ag/RGO NCs induce toxicity in cancer cells through pro-oxidant reactive oxygen species generation and antioxidant glutathione depletion and provided a novel green synthesis of Ag/RGO NCs with highly effective anticancer performance and better cytocompatibility.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - M. A. Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - Hisham A. Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|