1
|
Esmaeili M, Smith DA, Mead B. miRNA changes associated with differentiation of human embryonic stem cells into human retinal ganglion cells. Sci Rep 2024; 14:31895. [PMID: 39738601 DOI: 10.1038/s41598-024-83381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
miRNA, short non-coding RNA, are rapidly emerging as important regulators in cell homeostasis, as well as potential players in cellular degeneration. The latter has led to interest in them as both biomarkers and as potential therapeutics. Retinal ganglion cells (RGC), whose axons connect the eye to the brain, are central nervous system cells of great interest, yet their study is largely restricted to animals due to the difficulty in obtaining healthy human RGC. Using a CRISPR/Cas9-based reporter embryonic stem cell line, human RGC were generated and their miRNA profile characterized using NanoString miRNA assays. We identified a variety of retinal specific miRNA upregulated in ESC-derived RGC, with half of the most abundant miRNA also detectable in purified rat RGC. Several miRNA were however identified to be unique to RGC from human. The findings show which miRNA are abundant in RGC and the limited congruence with animal derived RGC. These data could be used to understand miRNA's role in RGC function, as well as potential biomarkers or therapies in retinal diseases involving RGC degeneration.
Collapse
Affiliation(s)
- Maryam Esmaeili
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK.
| | - Daniel A Smith
- Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ben Mead
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
2
|
Mackiewicz J, Tomczak J, Lisek M, Sakowicz A, Guo F, Boczek T. NFATc4 Knockout Promotes Neuroprotection and Retinal Ganglion Cell Regeneration After Optic Nerve Injury. Mol Neurobiol 2024; 61:9383-9401. [PMID: 38639863 PMCID: PMC11496353 DOI: 10.1007/s12035-024-04129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Retinal ganglion cells (RGCs), neurons transmitting visual information via the optic nerve, fail to regenerate their axons after injury. The progressive loss of RGC function underlies the pathophysiology of glaucoma and other optic neuropathies, often leading to irreversible blindness. Therefore, there is an urgent need to identify the regulators of RGC survival and the regenerative program. In this study, we investigated the role of the family of transcription factors known as nuclear factor of activated T cells (NFAT), which are expressed in the retina; however, their role in RGC survival after injury is unknown. Using the optic nerve crush (ONC) model, widely employed to study optic neuropathies and central nervous system axon injury, we found that NFATc4 is specifically but transiently up-regulated in response to mechanical injury. In the injured retina, NFATc4 immunolocalized primarily to the ganglionic cell layer. Utilizing NFATc4-/- and NFATc3-/- mice, we demonstrated that NFATc4, but not NFATc3, knockout increased RGC survival, improved retina function, and delayed axonal degeneration. Microarray screening data, along with decreased immunostaining of cleaved caspase-3, revealed that NFATc4 knockout was protective against ONC-induced degeneration by suppressing pro-apoptotic signaling. Finally, we used lentiviral-mediated NFATc4 delivery to the retina of NFATc4-/- mice and reversed the pro-survival effect of NFATc4 knockout, conclusively linking the enhanced survival of injured RGCs to NFATc4-dependent mechanisms. In summary, this study is the first to demonstrate that NFATc4 knockout may confer transient RGC neuroprotection and decelerate axonal degeneration after injury, providing a potent therapeutic strategy for optic neuropathies.
Collapse
Affiliation(s)
- Joanna Mackiewicz
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Julia Tomczak
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, China.
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
3
|
Huang LX, Sun T, Sun J, Wu ZM, Ling C, Zhang BY, Chen C, Wang H. Non-Coding RNA in Schwann Cell and Peripheral Nerve Injury: A Review. Adv Biol (Weinh) 2024:e2400357. [PMID: 39185790 DOI: 10.1002/adbi.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Indexed: 08/27/2024]
Abstract
Peripheral nerve injury (PNI) can result in severe disabilities, profoundly impacting patients' quality of life and potentially endangering their lives. Therefore, understanding the potential molecular mechanisms that facilitate the regeneration of damaged nerves is crucial. Evidence indicates that Schwann cells (SCs) play a pivotal role in repairing peripheral nerve injuries. Previous studies have shown that RNA, particularly non-coding RNA (ncRNA), plays a crucial role in nerve regeneration, including the proliferation and dedifferentiation of SCs. In this review, the individual roles of ncRNA in SCs and PNI are analyzed. This review not only enhances the understanding of ncRNA's role in nerve injury repair but also provides a significant theoretical foundation and inspiration for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Li-Xin Huang
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Zhi-Min Wu
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Bao-Yu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
4
|
Sun L, Cen Y, Liu X, Wei J, Ke X, Wang Y, Liao Q, Chang M, Zhou M, Wu W. Systemic whole transcriptome analysis identified underlying molecular characteristics and regulatory networks implicated in the retina following optic nerve injury. Exp Eye Res 2024; 244:109929. [PMID: 38750783 DOI: 10.1016/j.exer.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Abstract
Optic nerve injuries are severely disrupt the structural and functional integrity of the retina, often leading to visual impairment or blindness. Despite the profound impact of these injuries, the molecular mechanisms involved remain poorly understood. In this study, we performed a comprehensive whole-transcriptome analysis of mouse retina samples after optic nerve crush (ONC) to elucidate changes in gene expression and regulatory networks. Transcriptome analysis revealed a variety of molecular alterations, including 256 mRNAs, 530 lncRNAs, and 37 miRNAs, associated with metabolic, inflammatory, signaling, and biosynthetic pathways in the injured retina. The integrated analysis of co-expression and protein-protein interactions identified an active interconnected module comprising 5 co-expressed proteins (Fga, Serpina1a, Hpd, Slc38a4, and Ahsg) associated with the complement and coagulation cascades. Finally, 5 mRNAs (Fga, Serpinala, Hpd, Slc38a4, and Ahsg), 2 miRNAs (miR-671-5p and miR-3057-5p), and 6 lncRNAs (MSTRG. 1830.1, Gm10814, A530013C23Rik, Gm40634, MSTRG.9514.1, A330023F24Rik) were identified by qPCR in the injured retina, and some of them were validated as critical components of a ceRNA network active in 661W and HEK293T cells through dual-luciferase reporter assays. In conclusion, our study provides comprehensive insight into the complex and dynamic biological mechanisms involved in retinal injury responses and highlights promising potential targets to enhance neuroprotection and restore vision.
Collapse
Affiliation(s)
- Lanfang Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yixin Cen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaojiang Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinfei Wei
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyu Ke
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qianling Liao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengchun Chang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Meng Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
5
|
Yu HS, Hong EH, Kang JH, Lee YW, Lee WJ, Kang MH, Cho H, Shin YU, Seong M. Expression of microRNAs related to apoptosis in the aqueous humor and lens capsule of patients with glaucoma. Front Med (Lausanne) 2024; 11:1288854. [PMID: 38449883 PMCID: PMC10917207 DOI: 10.3389/fmed.2024.1288854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Background The aim of this study is to investigate the expression profiles of microRNAs (miRNAs) related to apoptosis in the aqueous humor (AH) and lens capsule (LC) of patients with glaucoma. Methods AH and LC samples were collected from patients with open-angle glaucoma and control participants who were scheduled for cataract surgery. A miRNA PCR array comprising 84 miRNAs was used to analyze the AH (glaucoma, n = 3; control, n = 3) and LC samples (glaucoma, n = 3; control, n = 4). Additionally, the AH and LC samples (glaucoma, n = 3; control, n = 4) were subjected to quantitative real-time PCR to validate the differentially expressed miRNAs determined using the PCR array. Bioinformatics analysis was performed to identify the interactions between miRNAs and diseases. Additionally, the differential expression of these miRNAs and the target gene was validated through in vitro experiments using a retinal ganglion cell (RGC) model. Results Expression levels of 19 and 3 miRNAs were significantly upregulated in the AH and LC samples of the glaucoma group, respectively (p < 0.05). Of these, the expression levels of hsa-miR-193a-5p and hsa-miR-222-3p showed significant differences in both AH and LC samples. Bioinformatics analysis showed experimentally validated 8 miRNA:gene pairs. Among them, PTEN was selected to analyze the expression level in AH and LC from separate cohort (glaucoma, n = 5; control, n = 4). The result showed downregulation of PTEN concurrent with upregulation of the two miRNAs in LC samples of glaucoma group. In vitro experiments validated that the expression levels of hsa-miR-193a-5p and hsa-miR-222-3p were significantly upregulated, and that of PTEN was significantly downregulated in the H2O2-treated RGC, while the level of PTEN was recovered through co-treatment with miR-193a inhibitor or miR-222 inhibitor. Conclusion This is the first study to investigate the differential expression of apoptosis-related miRNAs in the AH and LC of patients with glaucoma. Hsa-miR-193a-5p and hsa-miR-222-3p, which were upregulated in both AH and LC, may be considered potential biomarkers for glaucoma.
Collapse
Affiliation(s)
- Hyo Seon Yu
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Hong
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Ji Hye Kang
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yong Woo Lee
- Department of Ophthalmology, Kangwon National University Graduate School of Medicine, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Won June Lee
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Min Ho Kang
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
| | - Heeyoon Cho
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
- NOON Eye Clinic, Guri, Gyeonggi-do, Republic of Korea
| | - Yong Un Shin
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| | - Mincheol Seong
- Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Gyeonggi-do, Republic of Korea
- NOON Eye Clinic, Guri, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Dobrzycka M, Sulewska A, Biecek P, Charkiewicz R, Karabowicz P, Charkiewicz A, Golaszewska K, Milewska P, Michalska-Falkowska A, Nowak K, Niklinski J, Konopińska J. miRNA Studies in Glaucoma: A Comprehensive Review of Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:14699. [PMID: 37834147 PMCID: PMC10572595 DOI: 10.3390/ijms241914699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Glaucoma, a neurodegenerative disorder that leads to irreversible blindness, remains a challenge because of its complex nature. MicroRNAs (miRNAs) are crucial regulators of gene expression and are associated with glaucoma and other diseases. We aimed to review and discuss the advantages and disadvantages of miRNA-focused molecular studies in glaucoma through discussing their potential as biomarkers for early detection and diagnosis; offering insights into molecular pathways and mechanisms; and discussing their potential utility with respect to personalized medicine, their therapeutic potential, and non-invasive monitoring. Limitations, such as variability, small sample sizes, sample specificity, and limited accessibility to ocular tissues, are also addressed, underscoring the need for robust protocols and collaboration. Reproducibility and validation are crucial to establish the credibility of miRNA research findings, and the integration of bioinformatics tools for miRNA database creation is a valuable component of a comprehensive approach to investigate miRNA aberrations in patients with glaucoma. Overall, miRNA research in glaucoma has provided significant insights into the molecular mechanisms of the disease, offering potential biomarkers, diagnostic tools, and therapeutic targets. However, addressing challenges such as variability and limited tissue accessibility is essential, and further investigations and validation will contribute to a deeper understanding of the functional significance of miRNAs in glaucoma.
Collapse
Affiliation(s)
- Margarita Dobrzycka
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland;
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | - Angelika Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Kinga Golaszewska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| | - Patrycja Milewska
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland; (P.K.); (P.M.); (A.M.-F.)
| | | | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (A.C.); (J.N.)
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (K.G.)
| |
Collapse
|
7
|
Zhu JY, Ni XS, Han XY, Liu S, Ji YK, Yao J, Yan B. Metabolomic profiling of a neurodegenerative retina following optic nerve transection. Mol Med Rep 2023; 28:178. [PMID: 37539744 PMCID: PMC10433715 DOI: 10.3892/mmr.2023.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
The degeneration of retinal ganglion cells (RGCs) often causes irreversible vision impairment. Prevention of RGC degeneration can prevent or delay the deterioration of visual function. The present study aimed to investigate retinal metabolic profiles following optic nerve transection (ONT) injury and identify the potential metabolic targets for the prevention of RGC degeneration. Retinal samples were dissected from ONT group and non‑ONT group. The untargeted metabolomics were carried out using liquid chromatography‑tandem mass spectrometry. The involved pathways and biomarkers were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and MetaboAnalyst 5.0. In the ONT group, 689 disparate metabolites were detected, including lipids and lipid‑like molecules. A total of 122 metabolites were successfully annotated and enriched in 50 KEGG pathways. Among them, 'sphingolipid metabolism' and 'primary bile acid biosynthesis' were identified involved in RGC degeneration. A total of five metabolites were selected as the candidate biomarkers for detecting RGC degeneration with an AUC value of 1. The present study revealed that lipid‑related metabolism was involved in the pathogenesis of retinal neurodegeneration. Taurine, taurochenodesoxycholic acid, taurocholic acid (TCA), sphingosine, and galabiosylceramide are shown as the promising biomarkers for the diagnosis of RGC degeneration.
Collapse
Affiliation(s)
- Jun-Ya Zhu
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
| | - Xi-Sen Ni
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Yan Han
- Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
| | - Sha Liu
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Ke Ji
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jin Yao
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
- National Health Commission Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200030, P.R. China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200030, P.R. China
| |
Collapse
|
8
|
miR-181d-5p Protects against Retinal Ganglion Cell Death after Blunt Ocular Injury by Regulating NFIA-Medicated Astrocyte Development. Mediators Inflamm 2022; 2022:5400592. [PMID: 36254157 PMCID: PMC9569213 DOI: 10.1155/2022/5400592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Traumatic optic neuropathy (TON) refers to damage to the optic nerve resulting from direct and indirect trauma to the head and face. One of the important pathological processes in TON is the death of retinal ganglion cells (RGCs), but the cause of RGCs death remains unclear. We aimed to explore the mechanisms of RGCs death in an experimental TON model. Methods Optic nerve crush injury was induced in ten New Zealand white rabbits. On the 1st, 3rd, 7th, 14th, and 28th days after the operation, the retinal tissues of the rabbits were observed pathologically by hematoxylin-eosin staining. The expression of POU-homeodomain transcription factor Brn3a and glial fibrillary acidic protein (GFAP) was measured by immunofluorescence to evaluate the number of RGCs and astrocytes, respectively. miRNA expression and protein levels were assessed by RT-qPCR and western blot methods, respectively. Finally, the malondialdehyde content, superoxide dismutase activity, and proinflammatory factor levels were measured by ELISA. Western blot and dual-luciferase reporter assays were used to elucidate the relationship between miR-181d-5p and nuclear factor I-A (NFIA). Results Blunt ocular trauma increased oxidative stress and apoptosis and reduced ganglion cell layer (GCL) density. The expression of miR-181d-5p was decreased in retinal tissues, and its overexpression relieved RGCs death, astrocyte development, oxidative stress, and inflammation of the retina, which were reversed by NFIA overexpression. Conclusion miR-181d-5p can protect against the deterioration of TON by inhibiting RGCs death, astrocyte development, oxidative stress, and inflammation by targeting NFIA. This study provides new insight into early medical intervention in patients with TON.
Collapse
|