1
|
Luo C, Yang J. Age- and disease-related autophagy impairment in Huntington disease: New insights from direct neuronal reprogramming. Aging Cell 2024; 23:e14285. [PMID: 39044402 PMCID: PMC11320343 DOI: 10.1111/acel.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Autophagy impairment in Huntington disease (HD) has been reported for almost two decades. However, the molecular mechanisms underlying this phenomenon are still unclear. This is partially because it is challenging to model the impact of the disease-causing mutation, aging, as well as the selective vulnerability of neurons in a single model. Recently developed direct neuronal reprogramming that allows researchers to induce neurons-of-interest retaining biological aging information made it possible to establish HD cellular models to study more relevant age- and disease-related molecular changes in neurons. We here summarized the findings from a few latest studies utilizing directly reprogrammed HD neurons and discussed the new insights they brought to the understanding of the age- and disease-related autophagy impairment in HD.
Collapse
Affiliation(s)
- Chuyang Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsCollege of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsCollege of Pharmaceutical Sciences, Zhejiang University of TechnologyHangzhouChina
| |
Collapse
|
2
|
Kraskovskaya N, Koltsova A, Parfenova P, Shatrova A, Yartseva N, Nazarov V, Devyatkina E, Khotin M, Mikhailova N. Dermal Fibroblast Cell Line from a Patient with the Huntington's Disease as a Promising Model for Studying Disease Pathogenesis: Production and Characterization. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1239-1250. [PMID: 39218021 DOI: 10.1134/s000629792407006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Huntington's disease (HD) is an incurable hereditary disease caused by expansion of the CAG repeats in the HTT gene encoding the mutant huntingtin protein (mHTT). Despite numerous studies in cellular and animal models, the mechanisms underlying the biological role of mHTT and its toxicity to striatal neurons have not yet been established and no effective therapy for HD patients has been developed so far. We produced and characterized a new line of dermal fibroblasts (HDDF, Huntington's disease dermal fibroblasts) from a patient with a confirmed HD diagnosis. We also studied the growth characteristics of HDDF cells, stained them for canonical markers, karyotyped these cells, and investigated their phenotype. HDDF cells was successfully reprogrammed into induced striatal neurons via transdifferentiation. The new fibroblast line can be used as a cell model to study the biological role of mHTT and manifestations of HD pathogenesis in both fibroblasts and induced neuronal cells obtained from them by reprogramming techniques.
Collapse
Affiliation(s)
- Nina Kraskovskaya
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia.
| | - Anna Koltsova
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Polina Parfenova
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Alla Shatrova
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Natalya Yartseva
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Vladimir Nazarov
- Pavlov First St. Petersburg State Medical University, St. Petersburg, 197022, Russia
| | - Ekaterina Devyatkina
- Pavlov First St. Petersburg State Medical University, St. Petersburg, 197022, Russia
| | - Mikhail Khotin
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| | - Natalia Mikhailova
- Institute of Cytology, Russian Academy of Science, St. Petersburg, 194064, Russia
| |
Collapse
|
3
|
Loan A, Syal C, Lui M, He L, Wang J. Promising use of metformin in treating neurological disorders: biomarker-guided therapies. Neural Regen Res 2024; 19:1045-1055. [PMID: 37862207 PMCID: PMC10749596 DOI: 10.4103/1673-5374.385286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 10/22/2023] Open
Abstract
Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), cerebrovascular conditions (stroke), and neurodevelopmental disorders (autism spectrum disorder). Although they affect millions of individuals around the world, only a limited number of effective treatment options are available today. Since most neurological disorders express mitochondria-related metabolic perturbations, metformin, a biguanide type II antidiabetic drug, has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism. However, controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders. Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging, lifestyle, genetics, and environment, it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders. These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment, ultimately developing targeted therapy. In this review, we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Margarita Lui
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
4
|
Ratié L, Humbert S. A developmental component to Huntington's disease. Rev Neurol (Paris) 2024; 180:357-362. [PMID: 38614929 DOI: 10.1016/j.neurol.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Huntington's disease is a dominantly inherited disorder characterized by the dysfunction and death of cortical and striatal neurons. Striatal degeneration in Huntington's disease is due, at least in part, to defective cortical signalling to the striatum. Although Huntington's disease generally manifests at the adult stage, mouse and neuroimaging studies of presymptomatic mutation carriers suggest that it may affect neurodevelopment. In support of this notion, the development of the cortex is altered in mice with Huntington's disease and the foetuses of human Huntington's disease gene carriers. We will discuss these studies and the contribution of abnormal brain development to the later appearance of the disease.
Collapse
Affiliation(s)
- L Ratié
- U1216, CEA, Grenoble Institute Neurosciences, Inserm, université Grenoble Alpes, 38000 Grenoble, France
| | - S Humbert
- Institut du Cerveau-Paris Brain Institute, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France.
| |
Collapse
|
5
|
Stöberl N, Donaldson J, Binda CS, McAllister B, Hall-Roberts H, Jones L, Massey TH, Allen ND. Mutant huntingtin confers cell-autonomous phenotypes on Huntington's disease iPSC-derived microglia. Sci Rep 2023; 13:20477. [PMID: 37993517 PMCID: PMC10665390 DOI: 10.1038/s41598-023-46852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominantly inherited CAG repeat expansion in the huntingtin gene (HTT). Neuroinflammation and microglia have been implicated in HD pathology, however it has been unclear if mutant HTT (mHTT) expression has an adverse cell-autonomous effect on microglial function, or if they are only activated in response to the neurodegenerative brain environment in HD. To establish a human cell model of HD microglia function, we generated isogenic controls for HD patient-derived induced pluripotent stem cells (iPSC) with 109 CAG repeats (Q109). Q109 and isogenic Q22 iPSC, as well as non-isogenic Q60 and Q33 iPSC lines, were differentiated to iPSC-microglia. Our study supports a model of basal microglia dysfunction in HD leading to elevated pro-inflammatory cytokine production together with impaired phagocytosis and endocytosis capacity, in the absence of immune stimulation. These findings are consistent with early microglia activation observed in pre-manifest patients and indicate that mHTT gene expression affects microglia function in a cell-autonomous way.
Collapse
Affiliation(s)
- Nina Stöberl
- School of Biosciences, Cardiff University, Cardiff, UK.
| | - Jasmine Donaldson
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Caroline S Binda
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Hazel Hall-Roberts
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| | - Lesley Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Thomas H Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
6
|
Almeida LM, Oliveira Â, Oliveira JMA, Pinho BR. Stress response mechanisms in protein misfolding diseases: Profiling a cellular model of Huntington's disease. Arch Biochem Biophys 2023; 745:109711. [PMID: 37541563 DOI: 10.1016/j.abb.2023.109711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Stress response pathways like the integrated stress response (ISR), the mitochondrial unfolded protein response (UPRmt) and the heat shock response (HSR) have emerged as part of the pathophysiology of neurodegenerative diseases, including Huntington's disease (HD) - a currently incurable disease caused by the production of mutant huntingtin (mut-Htt). Previous data from HD patients suggest that ISR is activated while UPRmt and HSR are impaired in HD. The study of these stress response pathways as potential therapeutic targets in HD requires cellular models that mimic the activation status found in HD patients of such pathways. PC12 cells with inducible expression of the N-terminal fragment of mut-Htt are among the most used cell lines to model HD, however the activation of stress responses remains unclear in this model. The goal of this study is to characterize the activation of ISR, UPRmt and HSR in this HD cell model and evaluate if it mimics the activation status found in HD patients. We show that PC12 HD cell model presents reduced levels of Hsp90 and mitochondrial chaperones, suggesting an impaired activation or function of HSR and UPRmt. This HD model also presents increased levels of phosphorylated eIF2α, the master regulator of the ISR, but overall similar levels of ATF4 and decreased levels of CHOP - transcription factors downstream to eIF2α - in comparison to control, suggesting an initial activation of ISR. These results show that this model mimics the ISR activation and the impaired UPRmt and HSR found in HD patients. This work suggests that the PC12 N-terminal HD model is suitable for studying the role of stress response pathways in the pathophysiology of HD and for exploratory studies investigating the therapeutic potential of drugs targeting stress responses.
Collapse
Affiliation(s)
- Liliana M Almeida
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Oliveira
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| | - Brígida R Pinho
- UCIBIO-REQUIMTE - Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, Caruso C. Neuroinflammation in Huntington's Disease: A Starring Role for Astrocyte and Microglia. Curr Neuropharmacol 2022; 20:1116-1143. [PMID: 34852742 PMCID: PMC9886821 DOI: 10.2174/1570159x19666211201094608] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by a CAG repeat expansion in the huntingtin gene. HD causes motor, cognitive, and behavioral dysfunction. Since no existing treatment affects the course of this disease, new treatments are needed. Inflammation is frequently observed in HD patients before symptom onset. Neuroinflammation, characterized by the presence of reactive microglia, astrocytes and inflammatory factors within the brain, is also detected early. However, in comparison to other neurodegenerative diseases, the role of neuroinflammation in HD is much less known. Work has been dedicated to altered microglial and astrocytic functions in the context of HD, but less attention has been given to glial participation in neuroinflammation. This review describes evidence of inflammation in HD patients and animal models. It also discusses recent knowledge on neuroinflammation in HD, highlighting astrocyte and microglia involvement in the disease and considering anti-inflammatory therapeutic approaches.
Collapse
Affiliation(s)
- Julieta Saba
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico López Couselo
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Bruno
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina,Address correspondence to this author at the Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155 Piso 10, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina, Tel: +54 11 5285 3380; E-mail:
| |
Collapse
|
8
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|