1
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
2
|
Yudkina AV, Endutkin AV, Diatlova EA, Zharkov DO. A non-canonical nucleotide from viral genomes interferes with the oxidative DNA damage repair system. DNA Repair (Amst) 2024; 133:103605. [PMID: 38042029 DOI: 10.1016/j.dnarep.2023.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/09/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
Oxidative damage is a major source of genomic instability in all organisms with the aerobic metabolism. 8-Oxoguanine (8-oxoG), an abundant oxidized purine, is mutagenic and must be controlled by a dedicated DNA repair system (GO system) that prevents G:C→T:A transversions through an easily formed 8-oxoG:A mispair. In some forms, the GO system is present in nearly all cellular organisms. However, recent studies uncovered many instances of viruses possessing non-canonical nucleotides in their genomes. The features of genome damage and maintenance in such cases of alternative genetic chemistry remain barely explored. In particular, 2,6-diaminopurine (Z nucleotide) completely substitutes for A in the genomes of some bacteriophages, which have evolved pathways for dZTP synthesis and specialized polymerases that prefer dZTP over dATP. Here we address the ability of the GO system enzymes to cope with oxidative DNA damage in the presence of Z in DNA. DNA polymerases of two different structural families (Klenow fragment and RB69 polymerase) were able to incorporate dZMP opposite to 8-oxoG in the template, as well as 8-oxodGMP opposite to Z in the template. Fpg, a 8-oxoguanine-DNA glycosylase that discriminates against 8-oxoG:A mispairs, also did not remove 8-oxoG from 8-oxoG:Z mispairs. However, MutY, a DNA glycosylase that excises A from pairs with 8-oxoG, had a significantly lower activity on Z:8-oxoG mispairs. Similar preferences were observed for Fpg and MutY from different bacterial species (Escherichia coli, Staphylococcus aureus and Lactococcus lactis). Overall, the relaxed control of 8-oxoG in the presence of the Z nucleotide may be a source of additional mutagenesis in the genomes of bacteriophages or bacteria that have survived the viral invasion.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Evgeniia A Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia.
| |
Collapse
|
3
|
Veschetti L, Treccani M, De Tomi E, Malerba G. Genomic Instability Evolutionary Footprints on Human Health: Driving Forces or Side Effects? Int J Mol Sci 2023; 24:11437. [PMID: 37511197 PMCID: PMC10380557 DOI: 10.3390/ijms241411437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
In this work, we propose a comprehensive perspective on genomic instability comprising not only the accumulation of mutations but also telomeric shortening, epigenetic alterations and other mechanisms that could contribute to genomic information conservation or corruption. First, we present mechanisms playing a role in genomic instability across the kingdoms of life. Then, we explore the impact of genomic instability on the human being across its evolutionary history and on present-day human health, with a particular focus on aging and complex disorders. Finally, we discuss the role of non-coding RNAs, highlighting future approaches for a better living and an expanded healthy lifespan.
Collapse
Affiliation(s)
| | | | | | - Giovanni Malerba
- GM Lab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (M.T.); (E.D.T.)
| |
Collapse
|
4
|
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022; 11:2157. [PMID: 35883600 PMCID: PMC9316158 DOI: 10.3390/cells11142157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Although DNA degradation might seem an unwanted event, it is essential in many cellular processes that are key to maintaining genomic stability and cell and organism homeostasis. The capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways of cell biology such as DNA replication, repair, and death, as well as tuning the immune response. Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this review, we will dissect the impact of DNA degradation on the DNA damage response and its links with inflammation and cancer.
Collapse
Affiliation(s)
- Joan Manils
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Laura Marruecos
- Breast Cancer Laboratory, Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
5
|
Structural organization, evolution, and distribution of viral pyrimidine dimer-DNA glycosylases. Biophys Rev 2022; 14:923-932. [DOI: 10.1007/s12551-022-00972-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 12/18/2022] Open
|
6
|
Vechtomova YL, Telegina TA, Buglak AA, Kritsky MS. UV Radiation in DNA Damage and Repair Involving DNA-Photolyases and Cryptochromes. Biomedicines 2021; 9:biomedicines9111564. [PMID: 34829793 PMCID: PMC8615538 DOI: 10.3390/biomedicines9111564] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Prolonged exposure to ultraviolet radiation on human skin can lead to mutations in DNA, photoaging, suppression of the immune system, and other damage up to skin cancer (melanoma, basal cell, and squamous cell carcinoma). We reviewed the state of knowledge of the damaging action of UVB and UVA on DNA, and also the mechanisms of DNA repair with the participation of the DNA-photolyase enzyme or of the nucleotide excision repair (NER) system. In the course of evolution, most mammals lost the possibility of DNA photoreparation due to the disappearance of DNA photolyase genes, but they retained closely related cryptochromes that regulate the transcription of the NER system enzymes. We analyze the published relationships between DNA photolyases/cryptochromes and carcinogenesis, as well as their possible role in the prevention and treatment of diseases caused by UV radiation.
Collapse
Affiliation(s)
- Yuliya L. Vechtomova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (T.A.T.); (M.S.K.)
- Correspondence:
| | - Taisiya A. Telegina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (T.A.T.); (M.S.K.)
| | - Andrey A. Buglak
- Faculty of Physics, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Mikhail S. Kritsky
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (T.A.T.); (M.S.K.)
| |
Collapse
|