1
|
Sommer RJ. Pristionchus - Beetle associations: Towards a new natural history. J Invertebr Pathol 2024; 209:108243. [PMID: 39644992 DOI: 10.1016/j.jip.2024.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The free-living nematode Pristionchus pacificus has been established as a model system in integrative evolutionary biology by combining laboratory studies with field work and evolutionary biology. Multiple genetic, molecular and experimental tools and a collection of more than 2,500 P. pacificus strains and more than 50 Pristionchus species, which are available as living cultures or frozen stock collections, support research on various life history traits. Species of Pristionchus exhibit a number of complex traits unknown from Caenorhabditis elegans and most other free-living nematodes. First, P. pacificus can form two alternative mouth forms, an example of developmental plasticity that is increasingly studied to investigate the role of plasticity as a facilitator of evolutionary novelty. More than a decade of work has identified associated genetic and epigenetic mechanisms and revealed the evolutionary and ecological significance of feeding structure plasticity. Second, one of the two mouth morphs results in predatory behavior against other nematodes and is currently used to investigate the neurobiology of predation. Third, potential predation results in the risk of cannibalism among conspecifics. Strikingly, Pristionchus nematodes have developed a self-recognition system that allows the distinction of self (kin) and non-self. Given all these organismal features, this nematode has recently been considered a key example for research towards a new natural history (West-Eberhard, 2024). Here, I summarize recent work on Pristionchus with a focus on a 'new natural history'. In addition, I review some recent studies that indicate an interaction of Pristionchus with EPNs that was suggested based on various surveys in different ecological habitats.
Collapse
Affiliation(s)
- Ralf J Sommer
- Max Planck Institute for Biology Tübingen, Tübingen, Germany; Max Planck Ring 9, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Adams S, Tandonnet S, Pires-daSilva A. Balancing selfing and outcrossing: the genetics and cell biology of nematodes with three sexual morphs. Genetics 2024:iyae173. [PMID: 39548861 DOI: 10.1093/genetics/iyae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024] Open
Abstract
Trioecy, a rare reproductive system where hermaphrodites, females, and males coexist, is found in certain algae, plants, and animals. Though it has evolved independently multiple times, its rarity suggests it may be an unstable or transitory evolutionary strategy. In the well-studied Caenorhabditis elegans, attempts to engineer a trioecious strain have reverted to the hermaphrodite/male system, reinforcing this view. However, these studies did not consider the sex-determination systems of naturally stable trioecious species. The discovery of free-living nematodes of the Auanema genus, which have naturally stable trioecy, provides an opportunity to study these systems. In Auanema, females produce only oocytes, while hermaphrodites produce both oocytes and sperm for self-fertilization. Crosses between males and females primarily produce daughters (XX hermaphrodites and females), while male-hermaphrodite crosses result in sons only. These skewed sex ratios are due to X-chromosome drive during spermatogenesis, where males produce only X-bearing sperm through asymmetric cell division. The stability of trioecy in Auanema is influenced by maternal control over sex determination and environmental cues. These factors offer insights into the genetic and environmental dynamics that maintain trioecy, potentially explaining its evolutionary stability in certain species.
Collapse
Affiliation(s)
- Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sophie Tandonnet
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | | |
Collapse
|
3
|
Yoshida K, Witte H, Hatashima R, Sun S, Kikuchi T, Röseler W, Sommer RJ. Rapid chromosome evolution and acquisition of thermosensitive stochastic sex determination in nematode androdioecious hermaphrodites. Nat Commun 2024; 15:9649. [PMID: 39511185 PMCID: PMC11544036 DOI: 10.1038/s41467-024-53854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
The factors contributing to evolution of androdioecy, the coexistence of hermaphrodites and males such as in Caenorhabditis elegans, remains poorly known. However, nematodes exhibit androdioecy in at last 13 genera with the predatory genus Pristionchus having seven independent transitions towards androdioecy. Nonetheless, associated genomic architecture and sex determination mechanisms are largely known from Caenorhabditis. Here, studying 47 Pristionchus species, we observed repeated chromosome evolution which abolished the ancestral XX/XO sex chromosome system. Two phylogenetically unrelated androdioecious Pristionchus species have no genomic differences between sexes and mating hermaphrodites with males resulted in hermaphroditic offspring only. We demonstrate that stochastic sex determination is influenced by temperature in P. mayeri and P. entomophagus, and CRISPR engineering indicated a conserved role of the transcription factor TRA-1 in P. mayeri. Chromosome-level genome assemblies and subsequent genomic analysis of related Pristionchus species revealed stochastic sex determination to be derived from XY sex chromosome systems through sex chromosome-autosome fusions. Thus, rapid karyotype evolution, sex chromosome evolution and evolvable sex determination mechanisms are general features of this genus, and represent a dynamic background against which androdioecy has evolved recurrently. Future studies might indicate that stochastic sex determination is more common than currently appreciated.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan.
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ryo Hatashima
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo, Japan
| | - Simo Sun
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Al-Yazeedi T, Adams S, Tandonnet S, Turner A, Kim J, Lee J, Pires-daSilva A. The contribution of an X chromosome QTL to non-Mendelian inheritance and unequal chromosomal segregation in Auanema freiburgense. Genetics 2024; 227:iyae032. [PMID: 38431281 PMCID: PMC11075566 DOI: 10.1093/genetics/iyae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Auanema freiburgense is a nematode with males, females, and selfing hermaphrodites. When XO males mate with XX females, they typically produce a low proportion of XO offspring because they eliminate nullo-X spermatids. This process ensures that most sperm carry an X chromosome, increasing the likelihood of X chromosome transmission compared to random segregation. This occurs because of an unequal distribution of essential cellular organelles during sperm formation, likely dependent on the X chromosome. Some sperm components are selectively segregated into the X chromosome's daughter cell, while others are discarded with the nullo-X daughter cell. Intriguingly, the interbreeding of 2 A. freiburgense strains results in hybrid males capable of producing viable nullo-X sperm. Consequently, when these hybrid males mate with females, they yield a high percentage of male offspring. To uncover the genetic basis of nullo-spermatid elimination and X chromosome drive, we generated a genome assembly for A. freiburgense and genotyped the intercrossed lines. This analysis identified a quantitative trait locus spanning several X chromosome genes linked to the non-Mendelian inheritance patterns observed in A. freiburgense. This finding provides valuable clues to the underlying factors involved in asymmetric organelle partitioning during male meiotic division and thus non-Mendelian transmission of the X chromosome and sex ratios.
Collapse
Affiliation(s)
- Talal Al-Yazeedi
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sally Adams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sophie Tandonnet
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Anisa Turner
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Jun Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Junho Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | | |
Collapse
|
6
|
Rödelsperger C. Comparative Genomics of Sex, Chromosomes, and Sex Chromosomes in Caenorhabditis elegans and Other Nematodes. Methods Mol Biol 2024; 2802:455-472. [PMID: 38819568 DOI: 10.1007/978-1-0716-3838-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The nematode phylum has evolved a remarkable diversity of reproductive modes, including the repeated emergence of asexuality and hermaphroditism across divergent clades. The species-richness and small genome size of nematodes make them ideal systems for investigating the genome-wide causes and consequences of such major transitions. The availability of functional annotations for most Caenorhabditis elegans genes further allows the linking of patterns of gene content evolution with biological processes. Such gene-centric studies were recently complemented by investigations of chromosome evolution that made use of the first chromosome-scale genome assemblies outside the Caenorhabditis genus. This review highlights recent comparative genomic studies of reproductive mode evolution addressing the hybrid origin of asexuality and the parallel gene loss following the emergence of hermaphroditism. It further summarizes ongoing efforts to characterize ancient linkage blocks called Nigon elements, which form central units of chromosome evolution. Fusions between Nigon elements have been demonstrated to impact recombination and speciation. Finally, multiple recent fusions between autosomal and the sex-linked Nigon element reveal insights into the dynamic evolution of sex chromosomes across various timescales.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
7
|
Roy SW. Did the creeping vole sex chromosomes evolve through a cascade of adaptive responses to a selfish x chromosome? Bioessays 2023; 45:e2100164. [PMID: 37941456 DOI: 10.1002/bies.202100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
The creeping vole Microtus oregoni exhibits remarkably transformed sex chromosome biology, with complete chromosome drive/drag, X-Y fusions, sex reversed X complements, biased X inactivation, and X chromosome degradation. Beginning with a selfish X chromosome, I propose a series of adaptations leading to this system, each compensating for deleterious consequences of the preceding adaptation: (1) YY embryonic inviability favored evolution of a selfish feminizing X chromosome; (2) the consequent Y chromosome transmission disadvantage favored X-Y fusion ("XP "); (3) Xist-based silencing of Y-derived XP genes favored a second X-Y fusion ("XM "); (4) X chromosome dosage-related costs in XP XM males favored the evolution of XM loss during spermatogenesis; (5) X chromosomal dosage-related costs in XM 0 females favored the evolution of XM drive during oogenesis; and (6) degradation of the non-recombining XP favored the evolution of biased X chromosome inactivation. I discuss recurrent rodent sex chromosome transformation, and selfish genes as a constructive force in evolution.
Collapse
|
8
|
Sloat S, Rockman M. Sexual antagonism evolves when autosomes influence offspring sex ratio. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544982. [PMID: 37398423 PMCID: PMC10312671 DOI: 10.1101/2023.06.14.544982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Sex allocation theory generally assumes maternal control of offspring sex and makes few predictions for populations evolving under paternal control. Using population genetic simulations, we show that maternal and paternal control of the sex ratio lead to different equilibrium sex ratios in structured populations. Sex ratios evolved under paternal control are more female biased. This effect is dependent on the population subdivision; fewer founding individuals leads to both more biased sex ratios and a greater difference between the paternal and maternal equilibria. In addition, sexual antagonism evolves in simulations with both maternally- and paternally-acting loci. Maternally-acting loci continuously accumulate ever more female-biasing effects as male-biasing effects accumulate at paternally-acting loci. The difference in evolved sex-ratio equilibria and the evolution of sexual antagonism can be largely explained by differences in the between-group variance of maternal and paternal effects in the founding generation. These theoretical results apply to any system with biparental autosomal influence over offspring sex, opening up an exciting new line of questioning.
Collapse
Affiliation(s)
- Solomon Sloat
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Matthew Rockman
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003
| |
Collapse
|
9
|
On the Origin and Evolution of Sperm Cells. Cells 2022; 12:cells12010159. [PMID: 36611950 PMCID: PMC9818235 DOI: 10.3390/cells12010159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Sperm cells have intrigued biologists since they were first observed nearly 350 years ago by Antonie van Leeuwenhoek and Johan Ham [...].
Collapse
|
10
|
Al-Yazeedi T, Xu EL, Kaur J, Shakes DC, Pires-daSilva A. Lagging X chromatids specify the orientation of asymmetric organelle partitioning in XX spermatocytes of Auanema rhodensis. Genetics 2022; 222:6762860. [PMID: 36255260 PMCID: PMC9713428 DOI: 10.1093/genetics/iyac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
The unequal partitioning of molecules and organelles during cell division results in daughter cells with different fates. An extreme example is female meiosis, in which consecutive asymmetric cell divisions give rise to 1 large oocyte and 2 small polar bodies with DNA and minimal cytoplasm. Here, we test the hypothesis that during an asymmetric cell division during spermatogenesis of the nematode Auanema rhodensis, the late segregating X chromatids orient the asymmetric partitioning of cytoplasmic components. In previous studies, the secondary spermatocytes of wild-type XO males were found to divide asymmetrically to generate functional spermatids that inherit components necessary for sperm viability and DNA-containing residual bodies that inherit components to be discarded. Here we extend that analysis to 2 novel contexts. First, the isolation and analysis of a strain of mutant XX pseudomales revealed that such animals have highly variable patterns of X-chromatid segregation. The pattern of late segregating X chromatids nevertheless predicted the orientation of organelle partitioning. Second, while wild-type XX hermaphrodites were known to produce both 1X and 2X sperm, here, we show that spermatocytes within specific spermatogonial clusters exhibit 2 different patterns of X-chromatid segregation that correlate with distinct patterns of organelle partitioning. Together this analysis suggests that A. rhodensis has coopted lagging X chromosomes during anaphase II as a mechanism for determining the orientation of organelle partitioning.
Collapse
Affiliation(s)
| | | | - Jasmin Kaur
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Diane C Shakes
- Corresponding author: Department of Biology, William & Mary, Williamsburg, VA 23187, USA. (DCS)
| | - Andre Pires-daSilva
- Corresponding author: School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (AP-dS)
| |
Collapse
|
11
|
Dulovic A, Koch I, Hipp K, Streit A. Strongyloides spp. eliminate male-determining sperm post-meiotically. Mol Biochem Parasitol 2022; 251:111509. [PMID: 35985494 DOI: 10.1016/j.molbiopara.2022.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
If normal male meiosis occurs, it would be expected that 50 % of sperm lack an X chromosome (nullo X) and hence upon fertilisation, result in male progeny. However, for sexual reproduction within the free-living stages of Strongyloides spp. male offspring are absent. We had shown earlier by quantitative whole genome sequencing that within Strongyloides spp., nullo-X sperm are either absent (S. papillosus) or underrepresented (S. ratti) among mature sperm. To investigate how and when this elimination of male-determining sperm occurs, we characterised spermatogenesis and the dynamic localisation of important molecular players such as tubulin, actin and major sperm protein by DIC microscopy, immunohistochemistry, and fluorescent in situ hybridization (FISH) in S. ratti, S. papillosus and Parastrongyloides trichosuri. We found that meiotic divisions in these parasites proceeded as expected for organisms with XO males, resulting in four equally sized spermatocytes, two with and two without an X chromosome. However, mature sperm were found to almost always contain an X chromosome. We also observed structures that contained protein constituents of sperm, such as actin and major sperm protein (MSP) but no DNA. These structures resemble C. elegans residual bodies in appearance and may assume their function. We hypothesize that spermatocytes without an X-chromosome undergo some form of programmed cell death and transform into these residual body-like structures. As in C. elegans, MSP is found in fibrous body-membranous organelles (FB-MOs). Knocking down MSP by RNAi showed that MSP is essential for fertility in S. ratti, as it is in C. elegans.
Collapse
Affiliation(s)
- Alex Dulovic
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Iris Koch
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|