1
|
Škarková A, Bizzarri M, Janoštiak R, Mašek J, Rosel D, Brábek J. Educate, not kill: treating cancer without triggering its defenses. Trends Mol Med 2024; 30:673-685. [PMID: 38658206 DOI: 10.1016/j.molmed.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Traditionally, anticancer therapies focus on restraining uncontrolled proliferation. However, these cytotoxic therapies expose cancer cells to direct killing, instigating the process of natural selection favoring survival of resistant cells that become the foundation for tumor progression and therapy failure. Recognizing this phenomenon has prompted the development of alternative therapeutic strategies. Here we propose strategies targeting cancer hallmarks beyond proliferation, aiming at re-educating cancer cells towards a less malignant phenotype. These strategies include controlling cell dormancy, transdifferentiation therapy, normalizing the cancer microenvironment, and using migrastatic therapy. Adaptive resistance to these educative strategies does not confer a direct proliferative advantage to resistant cells, as non-resistant cells are not subject to eradication, thereby delaying or preventing the development of therapy-resistant tumors.
Collapse
Affiliation(s)
- Aneta Škarková
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Mariano Bizzarri
- System Biology Group Laboratory, Sapienza University, Rome, Italy
| | - Radoslav Janoštiak
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Jan Mašek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
| |
Collapse
|
2
|
Javorská Ž, Rimpelová S, Labíková M, Perlíková P. Synthesis of cytochalasan analogues with aryl substituents at position 10. Org Biomol Chem 2024; 22:4536-4549. [PMID: 38758050 DOI: 10.1039/d4ob00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Cytochalasans are fungal metabolites that are known to inhibit actin polymerization. Despite their remarkable bioactivity, there are few studies on the structure-activity relationship (SAR) of the cytochalasan scaffold. The full potential of structural modifications remains largely unexplored. The substituent at position 10 of the cytochalasan scaffold is derived from an amino acid incorporated into the cytochalasan core, thus limiting the structural variability at this position in natural products. Additionally, modifications at this position have only been achieved through semisynthetic or mutasynthetic approaches using modified amino acids. This paper introduces a modular approach for late-stage modifications at position 10 of the cytochalasan scaffold. Iron-mediated cross-coupling reactions with corresponding Grignard reagents were used to introduce aryl or benzyl groups in position 10, resulting in the synthesis of six new cytochalasan analogues bearing non-natural aromatic residues. This methodology enables further exploration of modifications at this position and SAR studies among cytochalasan analogues.
Collapse
Affiliation(s)
- Žaneta Javorská
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Magdaléna Labíková
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Pavla Perlíková
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague, Czech Republic
| |
Collapse
|
3
|
Formánek B, Dupommier D, Volfová T, Rimpelová S, Škarková A, Herciková J, Rösel D, Brábek J, Perlíková P. Synthesis and migrastatic activity of cytochalasin analogues lacking a macrocyclic moiety. RSC Med Chem 2024; 15:322-343. [PMID: 38283219 PMCID: PMC10809383 DOI: 10.1039/d3md00535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024] Open
Abstract
Cytochalasans are known as inhibitors of actin polymerization and for their cytotoxic and migrastatic activity. In this study, we synthesized a series of cytochalasin derivatives that lack a macrocyclic moiety, a structural element traditionally considered essential for their biological activity. We focused on substituting the macrocycle with simple aryl-containing sidechains, and we have also synthesized compounds with different substitution patterns on the cytochalasin core. The cytochalasin analogues were screened for their migrastatic and cytotoxic activity. Compound 24 which shares the substitution pattern with natural cytochalasins B and D exhibited not only significant in vitro migrastatic activity towards BLM cells but also demonstrated inhibition of actin polymerization, with no cytotoxic effect observed at 50 μM concentration. Our results demonstrate that even compounds lacking the macrocyclic moiety can exhibit biological activities, albeit less pronounced than those of natural cytochalasins. However, our findings emphasize the pivotal role of substituting the core structure in switching between migrastatic activity and cytotoxicity. These findings hold significant promise for further development of easily accessible cytochalasan analogues as novel migrastatic agents.
Collapse
Affiliation(s)
- Bedřich Formánek
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5 166 28 Prague Czech Republic
| | - Dorian Dupommier
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5 166 28 Prague Czech Republic
| | - Tereza Volfová
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University Průmyslová 595, 252 50 Vestec Prague West Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague Technická 5 166 28 Prague The Czech Republic
| | - Aneta Škarková
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University Průmyslová 595, 252 50 Vestec Prague West Czech Republic
| | - Jana Herciková
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5 166 28 Prague Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University Průmyslová 595, 252 50 Vestec Prague West Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University Průmyslová 595, 252 50 Vestec Prague West Czech Republic
| | - Pavla Perlíková
- Department of Organic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5 166 28 Prague Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo nám. 2 160 00 Prague Czech Republic
| |
Collapse
|
4
|
Miller CP, Fung M, Jaeger-Ruckstuhl CA, Xu Y, Warren EH, Akilesh S, Tykodi SS. Therapeutic targeting of tumor spheroids in a 3D microphysiological renal cell carcinoma-on-a-chip system. Neoplasia 2023; 46:100948. [PMID: 37944353 PMCID: PMC10663960 DOI: 10.1016/j.neo.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Metastatic renal cell carcinoma (RCC) remains an incurable disease for most patients highlighting an urgent need for new treatments. However, the preclinical investigation of new therapies is limited by traditional two-dimensional (2D) cultures which do not recapitulate the properties of tumor cells within a collagen extracellular matrix (ECM), while human tumor xenografts are time-consuming, expensive and lack adaptive immune cells. We report a rapid and economical human microphysiological system ("RCC-on-a-chip") to investigate therapies targeting RCC spheroids in a 3D collagen ECM. We first demonstrate that culture of RCC cell lines A498 and RCC4 in a 3D collagen ECM more faithfully reproduces the gene expression program of primary RCC tumors compared to 2D culture. We next used bortezomib as a cytotoxin to develop automated quantification of dose-dependent tumor spheroid killing. We observed that viable RCC spheroids exhibited collective migration within the ECM and demonstrated that our 3D system can be used to identify compounds that inhibit spheroid collective migration without inducing cell death. Finally, we demonstrate the RCC-on-a-chip as a platform to model the trafficking of tumor-reactive T cells into the ECM and observed antigen-specific A498 spheroid killing by engineered human CD8+ T cells expressing an ROR1-specific chimeric antigen receptor. In summary, the phenotypic differences between the 3D versus 2D environments, rapid imaging-based readout, and the ability to carefully study the impact of individual variables with quantitative rigor will encourage adoption of the RCC-on-a-chip system for testing a wide range of emerging therapies for RCC.
Collapse
Affiliation(s)
- Chris P Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.
| | - Megan Fung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Carla A Jaeger-Ruckstuhl
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Yuexin Xu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Edus H Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States; Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States; Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Scott S Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
5
|
Šuráňová M, Ďuriš M, Štenglová Netíková I, Brábek J, Horák T, Jůzová V, Chmelík R, Veselý P. Primary assessment of medicines for expected migrastatic potential with holographic incoherent quantitative phase imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:2689-2708. [PMID: 37342686 PMCID: PMC10278600 DOI: 10.1364/boe.488630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/23/2023]
Abstract
Solid tumor metastases cause most cancer-related deaths. The prevention of their occurrence misses suitable anti-metastases medicines newly labeled as migrastatics. The first indication of migrastatics potential is based on an inhibition of in vitro enhanced migration of tumor cell lines. Therefore, we decided to develop a rapid test for qualifying the expected migrastatic potential of some drugs for repurposing. The chosen Q-PHASE holographic microscope provides reliable multifield time-lapse recording and simultaneous analysis of the cell morphology, migration, and growth. The results of the pilot assessment of the migrastatic potential exerted by the chosen medicines on selected cell lines are presented.
Collapse
Affiliation(s)
- Markéta Šuráňová
- Institute of Physical Engineering (IPE), Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Miroslav Ďuriš
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Irena Štenglová Netíková
- General University Hospital in Prague, Department of Clinical Pharmacology and Pharmacy, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Laboratory of Cancer Cell Invasion, Charles University, Prague, Czech Republic
| | - Tomáš Horák
- Institute of Physical Engineering (IPE), Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Veronika Jůzová
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Radim Chmelík
- Institute of Physical Engineering (IPE), Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Veselý
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
6
|
Monti N, Dinicola S, Querqui A, Fabrizi G, Fedeli V, Gesualdi L, Catizone A, Unfer V, Bizzarri M. Myo-Inositol Reverses TGF-β1-Induced EMT in MCF-10A Non-Tumorigenic Breast Cells. Cancers (Basel) 2023; 15:cancers15082317. [PMID: 37190245 DOI: 10.3390/cancers15082317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Epithelial-Mesenchymal Transition (EMT), triggered by external and internal cues in several physiological and pathological conditions, elicits the transformation of epithelial cells into a mesenchymal-like phenotype. During EMT, epithelial cells lose cell-to-cell contact and acquire unusual motility/invasive capabilities. The associated architectural and functional changes destabilize the epithelial layer consistency, allowing cells to migrate and invade the surrounding tissues. EMT is a critical step in the progression of inflammation and cancer, often sustained by a main driving factor as the transforming growth factor-β1 (TGF-β1). Antagonizing EMT has recently gained momentum as an attractive issue in cancer treatment and metastasis prevention. Herein, we demonstrate the capability of myo-inositol (myo-Ins) to revert the EMT process induced by TGF-β1 on MCF-10A breast cells. Upon TGF-β1 addition, cells underwent a dramatic phenotypic transformation, as witnessed by structural (disappearance of the E-cadherin-β-catenin complexes and the emergence of a mesenchymal shape) and molecular modifications (increase in N-cadherin, Snai1, and vimentin), including the release of increased collagen and fibronectin. However, following myo-Ins, those changes were almost completely reverted. Inositol promotes the reconstitution of E-cadherin-β-catenin complexes, decreasing the expression of genes involved in EMT, while promoting the re-expression of epithelial genes (keratin-18 and E-cadherin). Noticeably, myo-Ins efficiently inhibits the invasiveness and migrating capability of TGF-β1 treated cells, also reducing the release of metalloproteinase (MMP-9) altogether with collagen synthesis, allowing for the re-establishment of appropriate cell-to-cell junctions, ultimately leading the cell layer back towards a more compact state. Inositol effects were nullified by previous treatment with an siRNA construct to inhibit CDH1 transcripts and, hence, E-cadherin synthesis. This finding suggests that the reconstitution of E-cadherin complexes is an irreplaceable step in the inositol-induced reversion of EMT. Overall, such a result advocates for the useful role of myo-Ins in cancer treatment.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Simona Dinicola
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Alessandro Querqui
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Gianmarco Fabrizi
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Valeria Fedeli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Luisa Gesualdi
- Section of Histology and Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Angela Catizone
- Section of Histology and Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
- Gynecology Department, UniCamillus-Saint Camillus International University of Health and Medical Sciences, 00161 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| |
Collapse
|
7
|
Lampe JB, Desai PP, Tripathi AK, Sabnis NA, Chen Z, Ranjan AP, Vishwanatha JK. Cabazitaxel-Loaded Nanoparticles Reduce the Invasiveness in Metastatic Prostate Cancer Cells: Beyond the Classical Taxane Function. Pharmaceutics 2023; 15:662. [PMID: 36839985 PMCID: PMC9967362 DOI: 10.3390/pharmaceutics15020662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Bone-metastatic prostate cancer symbolizes the beginning of the later stages of the disease. We designed a cabazitaxel-loaded, poly (lactic-co-glycolic acid) (PLGA) nanoparticle using an emulsion-diffusion-evaporation technique. Bis (sulfosuccinimidyl) suberate (BS3) was non-covalently inserted into the nanoparticle as a linker for the conjugation of a bone-targeting moiety to the outside of the nanoparticle. We hypothesized that the nanoparticles would have the ability to inhibit the epithelial-to-mesenchymal transition (EMT), invasion, and migration in prostate cancer cells. Targeted, cabazitaxel-loaded nanoparticles attenuated the EMT marker, Vimentin, and led to an increased E-cadherin expression. These changes impart epithelial characteristics and inhibit invasive properties in cancer progression. Consequently, progression to distant sites is also mitigated. We observed the reduction of phosphorylated Src at tyrosine 416, along with increased expression of phosphorylated cofilin at serine 3. These changes could affect migration and invasion pathways in cancer cells. Both increased p-120 catenin and inhibition in IL-8 expression were seen in targeted, cabazitaxel-loaded nanoparticles. Overall, our data show that the targeted, cabazitaxel-loaded nanoparticles can act as a promising treatment for metastatic prostate cancer by inhibiting EMT, invasion, and migration, in prostate cancer cells.
Collapse
Affiliation(s)
- Jana B. Lampe
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Priyanka P. Desai
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Amit K. Tripathi
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Nirupama A. Sabnis
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Amalendu P. Ranjan
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Jamboor K. Vishwanatha
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| |
Collapse
|
8
|
Legátová A, Pelantová M, Rösel D, Brábek J, Škarková A. The emerging role of microtubules in invasion plasticity. Front Oncol 2023; 13:1118171. [PMID: 36860323 PMCID: PMC9969133 DOI: 10.3389/fonc.2023.1118171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The ability of cells to switch between different invasive modes during metastasis, also known as invasion plasticity, is an important characteristic of tumor cells that makes them able to resist treatment targeted to a particular invasion mode. Due to the rapid changes in cell morphology during the transition between mesenchymal and amoeboid invasion, it is evident that this process requires remodeling of the cytoskeleton. Although the role of the actin cytoskeleton in cell invasion and plasticity is already quite well described, the contribution of microtubules is not yet fully clarified. It is not easy to infer whether destabilization of microtubules leads to higher invasiveness or the opposite since the complex microtubular network acts differently in diverse invasive modes. While mesenchymal migration typically requires microtubules at the leading edge of migrating cells to stabilize protrusions and form adhesive structures, amoeboid invasion is possible even in the absence of long, stable microtubules, albeit there are also cases of amoeboid cells where microtubules contribute to effective migration. Moreover, complex crosstalk of microtubules with other cytoskeletal networks participates in invasion regulation. Altogether, microtubules play an important role in tumor cell plasticity and can be therefore targeted to affect not only cell proliferation but also invasive properties of migrating cells.
Collapse
Affiliation(s)
- Anna Legátová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Markéta Pelantová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Jan Brábek
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Aneta Škarková
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia,*Correspondence: Aneta Škarková,
| |
Collapse
|
9
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
10
|
Vasarri M, Barletta E, Degl’Innocenti D. Marine Migrastatics: A Comprehensive 2022 Update. Mar Drugs 2022; 20:273. [PMID: 35621924 PMCID: PMC9145002 DOI: 10.3390/md20050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Metastasis is responsible for the bad prognosis in cancer patients. Advances in research on metastasis prevention focus attention on the molecular mechanisms underlying cancer cell motility and invasion to improve therapies for long-term survival in cancer patients. The so-called "migrastatics" could help block cancer cell invasion and lead to the rapid development of antimetastatic therapies, improving conventional cancer therapies. In the relentless search for migrastatics, the marine environment represents an important source of natural compounds due to its enormous biodiversity. Thus, this review is a selection of scientific research that has pointed out in a broad spectrum of in vitro and in vivo models the anti-cancer power of marine-derived products against cancer cell migration and invasion over the past five years. Overall, this review might provide a useful up-to-date guide about marine-derived compounds with potential interest for pharmaceutical and scientific research on antimetastatic drug endpoints.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
| |
Collapse
|