1
|
Lee EH, Kwak SH, Kim KY, Kim CY, Lee SH, Heo SJ, Chang YS, Kim EY. Clinical utility of repeated rebiopsy for EGFR T790M mutation detection in non-small cell lung cancer. Front Oncol 2024; 14:1452947. [PMID: 39252953 PMCID: PMC11381297 DOI: 10.3389/fonc.2024.1452947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose In cases where rebiopsy fails to find the epidermal growth factor receptor (EGFR) T790M mutation, the criteria for selecting patients for repeated rebiopsy remains unclear. This study aimed to assess the impact of repeated rebiopsy on T790M mutation detection in non-small cell lung cancer (NSCLC) patients. Methods Patients with advanced EGFR-mutated NSCLC between January 2018 and December 2021 at three-referral hospitals in South Korea underwent retrospective review. Of 682 patients who had rebiopsy after disease progression, T790M mutation status was assessed in plasma circulating tumor DNA (ctDNA) and/or tumor tissues. Results The overall T790M positivity rate increased from 40.8% after the first rebiopsy to 52.9% following multiple rebiopsies in the entire study population. Longer duration of initial EGFR TKI use (OR 1.792, ≥8 months vs. <8 months, p=0.004), better EGFR TKI responses (OR 1.611, complete or partial response vs. stable disease, p=0.006), presence of bone metastasis (OR 2.286, p<0.001) were correlated with higher T790M positivity. Longer EGFR TKI use and better responses increased T790M positivity in repeated tissue rebiopsy, while bone metastasis favored liquid rebiopsy. Additionally, T790M status has been shown to be positive over time through repeated rebiopsies ranging from several months to years, suggesting its dynamic nature. Conclusion In this study, among patients who initially tested negative for T790M in rebiopsy, repeated rebiopsies uncovered an additional 23.5% T790M positivity. Particularly, it is suggested that repeated rebiopsies may be valuable for patients with prolonged EGFR TKI usage, better responses to treatment, and bone metastasis.
Collapse
Affiliation(s)
- Eun Hye Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Se Hyun Kwak
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyeong Yeon Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Chi Young Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Giunta EF, Malapelle U, Russo A, De Giorgi U. Blood-based liquid biopsy in advanced prostate cancer. Crit Rev Oncol Hematol 2024; 194:104241. [PMID: 38122919 DOI: 10.1016/j.critrevonc.2023.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate cancer is characterized by several genetic alterations which could impact prognosis and therapeutic decisions in the advanced disease. Tissue biopsy is still considered the gold standard approach for molecular characterization in prostate cancer, but it has several limitations, including the possibility of insufficient/inadequate tumor tissue to be analyzed. Blood-based liquid biopsy is a non-invasive method to investigate tumor cell derivatives in the bloodstream, being a valid alternative to tissue biopsy for molecular characterization but also for predictive and/or prognostic purposes. In this review, we analyze the most relevant evidence in this field, focusing on clinically relevant targets such as HRD genetic alterations and also focusing on the differences between tissue and liquid biopsy in light of the data from the latest clinical trials.
Collapse
Affiliation(s)
- Emilio Francesco Giunta
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, FC, Italy.
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, FC, Italy
| |
Collapse
|
3
|
Xin L, Yue Y, Zihan R, Youbin C, Tianyu L, Rui W. Clinical application of liquid biopsy based on circulating tumor DNA in non-small cell lung cancer. Front Physiol 2023; 14:1200124. [PMID: 37351260 PMCID: PMC10282751 DOI: 10.3389/fphys.2023.1200124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Lung cancer is a widely occurring and deadly malignancy, with high prevalence rates in China and across the globe. Specifically, non-small cell lung cancer (NSCLC) represents about 85% of all lung cancer cases. The 5-year disease-free survival rate after surgery for stage IB-IIIB NSCLC patients (disease-free survival, DFS) has notably declined from 73% to 13%. Early detection of abnormal cancer molecules and subsequent personalized treatment plans are the most effective ways to address this problem. Liquid biopsy, surprisingly, enables safe, accurate, non-invasive, and dynamic tracking of disease progression. Among the various modalities, circulating tumor DNA (ctDNA) is the most commonly used liquid biopsy modality. ctDNA serves as a credible "liquid biopsy" diagnostic tool that, to a certain extent, overcomes tumor heterogeneity and harbors genetic mutations in malignancies, thereby providing early information on tumor genetic alterations. Despite considerable academic interest in the clinical significance of ctDNA, consensus on its utility remains lacking. In this review, we assess the role of ctDNA testing in the diagnosis and management of NSCLC as a reference for clinical intervention in this disease. Lastly, we examine future directions to optimize ctDNA for personalized therapy.
Collapse
Affiliation(s)
| | | | | | | | - Lu Tianyu
- *Correspondence: Wang Rui, ; Lu Tianyu,
| | - Wang Rui
- *Correspondence: Wang Rui, ; Lu Tianyu,
| |
Collapse
|
4
|
Souza VGP, Forder A, Brockley LJ, Pewarchuk ME, Telkar N, de Araújo RP, Trejo J, Benard K, Seneda AL, Minutentag IW, Erkan M, Stewart GL, Hasimoto EN, Garnis C, Lam WL, Martinez VD, Reis PP. Liquid Biopsy in Lung Cancer: Biomarkers for the Management of Recurrence and Metastasis. Int J Mol Sci 2023; 24:ijms24108894. [PMID: 37240238 DOI: 10.3390/ijms24108894] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Liquid biopsies have emerged as a promising tool for the detection of metastases as well as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient's blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are visible on imaging scans. Such tests are valuable for early intervention and personalized treatment, aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis. This makes liquid biopsies a more convenient and less risky option for patients, particularly those who are not good candidates for invasive procedures due to other medical conditions. While liquid biopsies for lung cancer metastases and relapse are still being developed and validated, they hold great promise for improving the detection and treatment of this deadly disease. Herein, we summarize available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence detection and describe their applications in clinical practice.
Collapse
Affiliation(s)
- Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araújo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Ana Laura Seneda
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Iael W Minutentag
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erica N Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Cathie Garnis
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Victor D Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| |
Collapse
|
5
|
Ren XD, Su N, Sun XG, Li WM, Li J, Li BW, Li RX, Lv J, Xu QY, Kong WL, Huang Q. Advances in liquid biopsy-based markers in NSCLC. Adv Clin Chem 2023; 114:109-150. [PMID: 37268331 DOI: 10.1016/bs.acc.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lung cancer is the second most-frequently occurring cancer and the leading cause of cancer-associated deaths worldwide. Non-small cell lung cancer (NSCLC), the most common type of lung cancer is often diagnosed in middle or advanced stages and have poor prognosis. Diagnosis of disease at an early stage is a key factor for improving prognosis and reducing mortality, whereas, the currently used diagnostic tools are not sufficiently sensitive for early-stage NSCLC. The emergence of liquid biopsy has ushered in a new era of diagnosis and management of cancers, including NSCLC, since analysis of circulating tumor-derived components, such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), cell-free RNAs (cfRNAs), exosomes, tumor-educated platelets (TEPs), proteins, and metabolites in blood or other biofluids can enable early cancer detection, treatment selection, therapy monitoring and prognosis assessment. There have been great advances in liquid biopsy of NSCLC in the past few years. Hence, this chapter introduces the latest advances on the clinical application of cfDNA, CTCs, cfRNAs and exosomes, with a particular focus on their application as early markers in the diagnosis, treatment and prognosis of NSCLC.
Collapse
Affiliation(s)
- Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jing Lv
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qian-Ying Xu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei-Long Kong
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
6
|
Wang Q, Gümüş ZH, Colarossi C, Memeo L, Wang X, Kong CY, Boffetta P. SCLC: Epidemiology, Risk Factors, Genetic Susceptibility, Molecular Pathology, Screening, and Early Detection. J Thorac Oncol 2023; 18:31-46. [PMID: 36243387 PMCID: PMC10797993 DOI: 10.1016/j.jtho.2022.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022]
Abstract
We review research regarding the epidemiology, risk factors, genetic susceptibility, molecular pathology, and early detection of SCLC, a deadly tumor that accounts for 14% of lung cancers. We first summarize the changing incidences of SCLC globally and in the United States among males and females. We then review the established risk factor (i.e., tobacco smoking) and suspected nonsmoking-related risk factors for SCLC, and emphasize the importance of continued effort in tobacco control worldwide. Review of genetic susceptibility and molecular pathology suggests different molecular pathways in SCLC development compared with other types of lung cancer. Last, we comment on the limited utility of low-dose computed tomography screening in SCLC and on several promising blood-based molecular biomarkers as potential tools in SCLC early detection.
Collapse
Affiliation(s)
- Qian Wang
- University Hospitals Seidman Cancer Center, Cleveland, Ohio.
| | - Zeynep H Gümüş
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Thoracic Oncology, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Xintong Wang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chung Yin Kong
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paolo Boffetta
- Department of Family, Population & Preventive Medicine, Stony Brook University, Stony Brook, New York; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Gristina V, Barraco N, La Mantia M, Castellana L, Insalaco L, Bono M, Perez A, Sardo D, Inguglia S, Iacono F, Cutaia S, Bazan Russo TD, Francini E, Incorvaia L, Badalamenti G, Russo A, Galvano A, Bazan V. Clinical Potential of Circulating Cell-Free DNA (cfDNA) for Longitudinally Monitoring Clinical Outcomes in the First-Line Setting of Non-Small-Cell Lung Cancer (NSCLC): A Real-World Prospective Study. Cancers (Basel) 2022; 14:cancers14236013. [PMID: 36497493 PMCID: PMC9735435 DOI: 10.3390/cancers14236013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the increasing implementation of targeted and immunotherapy-based treatments, the prognosis of patients with advanced NSCLC remains dismal. We prospectively evaluated longitudinal plasma cfDNA kinetics as an early marker of therapeutic efficacy in patients with advanced NSCLC undergoing standard first-line treatments. METHODS From February 2020 to May 2022, treatment-naïve patients with advanced NSCLC were consecutively enrolled at the Medical Oncology Unit of the Paolo Giaccone University Hospital, Palermo (Italy). We quantified cfDNA in terms of ng/μL using a QubitTM dsDNA HS Assay Kit. The agreement between the cfDNA and radiologic response was evaluated from baseline (T0) to the radiologic evaluation (T1). RESULTS A total of 315 liquid biopsy samples were collected from 63 patients at baseline, with a total of 235 paired plasma samples from 47 patients at disease re-evaluation. A fair concordance was observed between early and durable radiographic and cfDNA response (Cohen's kappa coefficient = 0.001); 11 and 18 patients receiving TKI (Pearson's chi-squared test = 4.278; Cohen's kappa coefficient = 0.039) and IO treatments (Pearson's chi-squared test = 7.481; Cohen's kappa coefficient = 0.006) showed a significant and durable association between cfDNA dynamics and the first radiologic evaluation, whereas among the 18 patients undergoing CT, no significant correlation was observed (Pearson's chi-squared test = 0.720; Cohen's kappa coefficient = 0.396). The ECOG-PS 2 patients presented with the mean baseline cfDNA levels 2.6-fold higher than those with ECOG-PS 0-1 (1.71 vs. 0.65 ng/µL; p = 0.105). CONCLUSIONS Our real-world study demonstrates that quantitative changes in cfDNA values correlated with responses to therapy and relapse of disease in treatment-naïve patients with advanced NSCLC undergoing TKI- and IO-based treatments.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Maria La Mantia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luisa Castellana
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lavinia Insalaco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Bono
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Delia Sardo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Sara Inguglia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Federica Iacono
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Sofia Cutaia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | | | - Edoardo Francini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
- Correspondence:
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
8
|
Benesova L, Ptackova R, Halkova T, Semyakina A, Svaton M, Fiala O, Pesek M, Minarik M. Detection and Quantification of ctDNA for Longitudinal Monitoring of Treatment in Non-Small Cell Lung Cancer Patients Using a Universal Mutant Detection Assay by Denaturing Capillary Electrophoresis. Pathol Oncol Res 2022; 28:1610308. [PMID: 35837614 PMCID: PMC9274771 DOI: 10.3389/pore.2022.1610308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022]
Abstract
Background: Observation of anticancer therapy effect by monitoring of minimal residual disease (MRD) is becoming an important tool in management of non-small cell lung cancer (NSCLC). The approach is based on periodic detection and quantification of tumor-specific somatic DNA mutation in circulating tumor DNA (ctDNA) extracted from patient plasma. For such repetitive testing, complex liquid-biopsy techniques relying on ultra-deep NGS sequencing are impractical. There are other, cost-effective, methods for ctDNA analysis, typically based on quantitative PCR or digital PCR, which are applicable for detecting specific individual mutations in hotspots. While such methods are routinely used in NSCLC therapy prediction, however, extension to cover broader spectrum of mutations (e.g., in tumor suppressor genes) is required for universal longitudinal MRD monitoring. Methods: For a set of tissue samples from 81 NSCLC patients we have applied a denaturing capillary electrophoresis (DCE) for initial detection of somatic mutations within 8 predesigned PCR amplicons covering oncogenes and tumor suppressor genes. Mutation-negative samples were then subjected to a large panel NGS sequencing. For each patient mutation found in tissue was then traced over time in ctDNA by DCE. Results: In total we have detected a somatic mutation in tissue of 63 patients. For those we have then prospectively analyzed ctDNA from collected plasma samples over a period of up to 2 years. The dynamics of ctDNA during the initial chemotherapy therapy cycles as well as in the long-term follow-up matched the clinically observed response. Conclusion: Detection and quantification of tumor-specific mutations in ctDNA represents a viable complement to MRD monitoring during therapy of NSCLC patients. The presented approach relying on initial tissue mutation detection by DCE combined with NGS and a subsequent ctDNA mutation testing by DCE only represents a cost-effective approach for its routine implementation.
Collapse
Affiliation(s)
- Lucie Benesova
- Center for Applied Genomics of Solid Tumors, Genomac Research Institute, Prague, Czechia
| | - Renata Ptackova
- Center for Applied Genomics of Solid Tumors, Genomac Research Institute, Prague, Czechia
| | - Tereza Halkova
- Center for Applied Genomics of Solid Tumors, Genomac Research Institute, Prague, Czechia
| | - Anastasiya Semyakina
- Center for Applied Genomics of Solid Tumors, Genomac Research Institute, Prague, Czechia
| | - Martin Svaton
- Department of Pneumology and Phtiseology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Ondrej Fiala
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Milos Pesek
- Department of Pneumology and Phtiseology, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czechia
| | - Marek Minarik
- Elphogene, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Marek Minarik,
| |
Collapse
|
9
|
Putative Clinical Potential of ERBB2 Amplification Assessment by ddPCR in FFPE-DNA and cfDNA of Gastroesophageal Adenocarcinoma Patients. Cancers (Basel) 2022; 14:cancers14092180. [PMID: 35565309 PMCID: PMC9102116 DOI: 10.3390/cancers14092180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Gastroesophageal adenocarcinoma (GEA) has a poor prognosis. However, since the HER2 positive subgroup could benefit from trastuzumab targeted therapy, considerable effort has been spent in determining the HER2 status in these patients. To date, immunohistochemistry and in situ hybridization are the gold standard methods for assessing HER2/ERBB2 overexpression/amplification in tumor specimens. However, they have several limitations due to their cost, the large number of undetermined cases, and the impossibility of longitudinal patient monitoring. Here, we report the potential of a molecular method (droplet digital PCR) to investigate ERBB2 status in both solid and liquid biopsies of GEA. Results suggest that this methodology could be used to implement current histological analysis in solid biopsy and that it may be feasible in liquid biopsy. An alternative, more sensitive method of assessing HER2 status may aid physicians in their therapeutic decision-making, benefiting the patient. Liquid biopsy could also overcome the limitations of tissue-based analyses. Abstract Anti-HER2 monoclonal antibody trastuzumab improves the survival of those patients with advanced gastroesophageal adenocarcinoma (GEA) exhibiting HER2/ERBB2 overexpression/amplification. The current gold standard methods used to diagnose the HER2 status in GEA are immunohistochemistry (IHC) and silver or fluorescence in situ hybridization (SISH or FISH). However, they do not permit spatial and temporal tumor monitoring, nor do they overcome intra-cancer heterogeneity. Droplet digital PCR (ddPCR) was used to implement the assessment of HER2 status in formalin-fixed paraffin-embedded (FFPE) tumor DNA from a retrospective cohort (86 patients) and in cell-free DNA (cfDNA) samples from a prospective cohort (28 patients). In comparison to IHC/SISH, ddPCR assay revealed ERBB2 amplification in a larger patient fraction, including HER2 2+ and 0–1+ of the retrospective cohort (45.3% vs. 15.1%). In addition, a considerable number of HER2 2+ and 0–1+ prospective patients who were negative in FFPE by both IHC/SISH and ddPCR, showed ERBB2 amplification in the cfDNA collected just before surgery. cfDNA analysis in a few longitudinal cases revealed an increasing ERBB2 trend at progression. In conclusion, ddPCR in liquid biopsy may improve the detection rate of HER2 positive patients, preventing those patients who could benefit from targeted therapy from being incorrectly excluded.
Collapse
|
10
|
La Monica S. EGFR Signaling in Non-Small Cell Lung Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cells 2022; 11:cells11081344. [PMID: 35456023 PMCID: PMC9025122 DOI: 10.3390/cells11081344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
11
|
Fernandes MGO, Cruz-Martins N, Machado JC, Costa JL, Hespanhol V. The value of cell-free circulating tumour DNA profiling in advanced non-small cell lung cancer (NSCLC) management. Cancer Cell Int 2021; 21:675. [PMID: 34915883 PMCID: PMC8680243 DOI: 10.1186/s12935-021-02382-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
AbstractLiquid biopsy (LB) has boosted a remarkable change in the management of cancer patients by contributing to tumour genomic profiling. Plasma circulating cell-free tumour DNA (ctDNA) is the most widely searched tumour-related element for clinical application. Specifically, for patients with lung cancer, LB has revealed valuable to detect the diversity of targetable genomic alterations and to detect and monitor the emergence of resistance mechanisms. Furthermore, its non-invasive nature helps to overcome the difficulty in obtaining tissue samples, offering a comprehensive view about tumour diversity. However, the use of the LB to support diagnostic and therapeutic decisions still needs further clarification. In this sense, this review aims to provide a critical view of the clinical importance of plasma ctDNA analysis, the most widely applied LB, and its limitations while anticipating concepts that will intersect the present and future of LB in non-small cell lung cancer patients.
Graphical Abstract
Collapse
|