1
|
Buglak DB, Holmes KHM, Galletta BJ, Rusan NM. The proximal centriole-like structure maintains nucleus-centriole architecture in sperm. J Cell Sci 2024; 137:jcs262311. [PMID: 39166297 PMCID: PMC11423811 DOI: 10.1242/jcs.262311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Proper connection between the sperm head and tail is critical for sperm motility and fertilization. Head-tail linkage is mediated by the head-tail coupling apparatus (HTCA), which secures the axoneme (tail) to the nucleus (head). However, the molecular architecture of the HTCA is poorly understood. Here, we use Drosophila to investigate formation and remodeling of the HTCA throughout spermiogenesis by visualizing key components of this complex. Using structured illumination microscopy, we demonstrate that key HTCA proteins Spag4 and Yuri form a 'centriole cap' that surrounds the centriole (or basal body) as it invaginates into the surface of the nucleus. As development progresses, the centriole is laterally displaced to the side of the nucleus while the HTCA expands under the nucleus, forming what we term the 'nuclear shelf'. We next show that the proximal centriole-like (PCL) structure is positioned under the nuclear shelf, functioning as a crucial stabilizer of centriole-nucleus attachment. Together, our data indicate that the HTCA is a complex, multi-point attachment site that simultaneously engages the PCL, the centriole and the nucleus to ensure proper head-tail connection during late-stage spermiogenesis.
Collapse
Affiliation(s)
- Danielle B. Buglak
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathleen H. M. Holmes
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian J. Galletta
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Zhang Y, Liu G, Huang L, He X, Su Y, Nie X, Mao Z, Xing X. SUN5 interacts with nuclear membrane LaminB1 and cytoskeletal GTPase Septin12 mediating the sperm head-and-tail junction. Mol Hum Reprod 2024; 30:gaae022. [PMID: 38870534 DOI: 10.1093/molehr/gaae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Acephalic spermatozoa syndrome (ASS) is a severe teratospermia with decaudated, decapitated, and malformed sperm, resulting in male infertility. Nuclear envelope protein SUN5 localizes to the junction between the sperm head and tail. Mutations in the SUN5 gene have been identified most frequently (33-47%) in ASS cases, and its molecular mechanism of action is yet to be explored. In the present study, we generated Sun5 knockout mice, which presented the phenotype of ASS. Nuclear membrane protein LaminB1 and cytoskeletal GTPases Septin12 and Septin2 were identified as potential partners for interacting with SUN5 by immunoprecipitation-mass spectrometry in mouse testis. Further studies demonstrated that SUN5 connected the nucleus by interacting with LaminB1 and connected the proximal centriole by interacting with Septin12. The binding between SUN5 and Septin12 promoted their aggregation together in the sperm neck. The disruption of the LaminB1/SUN5/Septin12 complex by Sun5 deficiency caused separation of the Septin12-proximal centriole from the nucleus, leading to the breakage of the head-to-tail junction. Collectively, these data provide new insights into the pathogenesis of ASS caused by SUN5 deficiency.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiyi He
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuyan Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Hu Y, Cai TT, Yan RN, Liu BL, Ding B, Ma JH. Single-Cell RNA Sequencing Analysis of Steroidogenesis and Spermatogenesis Impairment in the Testis of db/db Mice. Int J Endocrinol 2024; 2024:8797972. [PMID: 38817616 PMCID: PMC11139535 DOI: 10.1155/2024/8797972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Objective The mechanism of steroidogenesis and spermatogenesis impairment in men with type 2 diabetes remains unclear. We aimed to explore the local changes of steroidogenesis and spermatogenesis in the testis of db/db mice. Research Design and Methods. We performed single-cell RNA sequencing analysis in the testis of db/db and C57BL/6J mice. The differentially expressed genes were then confirmed by real-time PCR. The histopathological characteristics of testis in db/db mice and C57BL/6J control were also performed. Results The 20-week-old db/db mice had significantly higher blood glucose and body weight (both p < 0.001). The serum testosterone levels (4.4 ± 0.8 vs. 9.8 ± 0.7 ng/ml, p=0.001) and weight of the testis (0.16 ± 0.01 vs. 0.24 ± 0.01 g, p < 0.001) were significantly lower in db/db mice than that in C57BL/6J controls. db/db mice had a lower cross-sectional area of seminiferous tubules and thickness of the cell layer (both p < 0.05). The numbers of Sertoli cells and Leydig cells decreased in db/db mice (both p < 0.01). Single-cell RNA sequencing analysis showed that compared with the control group, the percentage of spermatogonia was significantly higher in the db/db mouse (p < 0.001), while the proportions of spermatocytes, round and elongating spermatids, and sperms were all lower in the db/db mouse (p all < 0.001). The most differentially expressed genes were found in round spermatids (n = 86), which were not found in spermatogonia, spermatocyte, and sperm. Igfbp5 was the most significantly decreased gene in Leydig cells of the db/db mouse, while the expression of Cd74, H2-Aa, and H2-Eb1 was elevated. Ccl7 and Ptgds were the most significantly increased and decreased genes in Sertoli cells of the db/db mouse. Conclusions The present study indicates spermiogenesis and steroidogenesis defects in db/db mice. The mechanism of steroidogenesis impairment in the testis of db/db mice deserves further investigation.
Collapse
Affiliation(s)
- Yun Hu
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting-Ting Cai
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Reng-Na Yan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bing-Li Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Ding
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Hua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Khanal S, Jaiswal A, Chowdanayaka R, Puente N, Turner K, Assefa KY, Nawras M, Back ED, Royfman A, Burkett JP, Cheong SH, Fisher HS, Sindhwani P, Gray J, Ramachandra NB, Avidor-Reiss T. The evolution of centriole degradation in mouse sperm. Nat Commun 2024; 15:117. [PMID: 38168044 PMCID: PMC10761967 DOI: 10.1038/s41467-023-44411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Centrioles are subcellular organelles found at the cilia base with an evolutionarily conserved structure and a shock absorber-like function. In sperm, centrioles are found at the flagellum base and are essential for embryo development in basal animals. Yet, sperm centrioles have evolved diverse forms, sometimes acting like a transmission system, as in cattle, and sometimes becoming dispensable, as in house mice. How the essential sperm centriole evolved to become dispensable in some organisms is unclear. Here, we test the hypothesis that this transition occurred through a cascade of evolutionary changes to the proteins, structure, and function of sperm centrioles and was possibly driven by sperm competition. We found that the final steps in this cascade are associated with a change in the primary structure of the centriolar inner scaffold protein FAM161A in rodents. This information provides the first insight into the molecular mechanisms and adaptive evolution underlying a major evolutionary transition within the internal structure of the mammalian sperm neck.
Collapse
Affiliation(s)
- Sushil Khanal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ankit Jaiswal
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rajanikanth Chowdanayaka
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru, India
| | - Nahshon Puente
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Katerina Turner
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Mohamad Nawras
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Ezekiel David Back
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Abigail Royfman
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - James P Burkett
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi S Fisher
- Department of Biology, University of Maryland College Park, College Park, MD, USA
| | - Puneet Sindhwani
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
5
|
Rahimian M, Askari M, Salehi N, Riccio A, Jaafarinia M, Almadani N, Totonchi M. A novel missense variant in CDK5RAP2 associated with non-obstructive azoospermia. Taiwan J Obstet Gynecol 2023; 62:830-837. [PMID: 38008501 DOI: 10.1016/j.tjog.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVE The most severe type of male infertility is non-obstructive azoospermia (NOA), where there is no sperm in the ejaculate due to failure of spermatogenesis, affecting 10%-20% of infertile men with azoospermia. Genetic studies have identified dozens of NOA genes. The main aim of the present study is to identify a novel monogenic mutation that may cause NOA. MATERIALS AND METHODS We studied the pedigree of a consanguineous family with three NOA and one fertile brother by a family-based exome-sequencing, segregation analysis, insilico protein modeling and single-cell RNA sequencing data analysis. RESULTS Bioinformatics analysis followed by sanger sequencing revealed that three NOA brothers were homozygous for a rare missense variant in Cyclin Dependent Kinase Regulatory Subunit Associated Protein 2 (Centrosomin) CDK5RAP2 (NM_018249:exon26:c.A4003T:p.R1335W, rs761196443). Protein modeling demonstrated that CDK5RAP2, Arg1335Trp resided nearby the Microtubule Associated Protein RP/EB Family Member 1 (EB1/MAPRE1) interaction site. As a consequence of the R1335W mutation, the positively charged Arginine was replaced by to the hydrophobic tryptophan residue, possibly leading to local instability in the structure and perturbation in the CDK5RAP2-MAPRE1 interaction. CONCLUSION Our study reports a novel missense variant of CDK5RAP2 that segregates in homozygosity with male infertility and NOA in a consanguineous family. In silico structural predictions and gene expression data indicate a potential role of the CDK5RAP2 variant in causing defective centrosomic maturation during spermatogenesis.
Collapse
Affiliation(s)
- Mouness Rahimian
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Masomeh Askari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Mojtaba Jaafarinia
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Turner KA, Caswell DL, McGrady BM, Pietras-Allen A, Sedlak J, Nathan C, Parasuraman S, McGann AP, Fazili FM, Bell JR, El Smail KN, Pillai SB, Parry KR, Richardson KP, Ruble K, Jaiswal A, Shah TA, Sindhwani P, Avidor-Reiss T. CP110 and CEP135 localize near the proximal and distal centrioles of cattle and human spermatozoa. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000951. [PMID: 37822686 PMCID: PMC10562935 DOI: 10.17912/micropub.biology.000951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Centrosomes play an important role in the microtubule organization of a cell. The sperm's specialized centrosome consists of the canonical barrel-shaped proximal centriole, the funnel-shaped distal centriole, and the pericentriolar material known as striated columns (or segmented columns). Here, we examined the localization of the centriole proteins CEP135 and CP110 in cattle and human spermatozoa. In canonical centrioles, CP110 is a centriole tip protein that controls cilia formation, while CEP135 is a structural protein essential for constructing the centriole. In contrast, we found antibodies recognizing CEP135 and CP110 label near the proximal and distal centrioles at the expected location of the striated columns and capitulum in cattle and humans in an antibody and species-specific way. These findings provide a pathway to understanding the unique functions of spermatozoan centrosome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kelsie Ruble
- University of Toledo, Toledo, Ohio, United States
| | | | | | | | | |
Collapse
|
7
|
Wang X, Jiang C, Dai S, Shen G, Yang Y, Shen Y. Identification of nonfunctional SPATA20 causing acephalic spermatozoa syndrome in humans. Clin Genet 2023; 103:310-319. [PMID: 36415156 DOI: 10.1111/cge.14268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Acephalic spermatozoa syndrome (ASS) is a rare and severe type of teratozoospermia characterized by the predominance of headless spermatozoa in the ejaculate. However, knowledge about the causative genes associated with ASS in humans is limited. Loss-of-function of SPATA20 has been suggested to result in the separation of the sperm head and flagellum in mice, whereas there have been no cases reporting SPATA20 variants leading to human male infertility. In this study, a nonsense mutation in SPATA20 (c.619C > T, p.Arg207*) was first identified in an ASS patient. Moreover, this variant contributed to the degradation of SPATA20 and was associated with decreased expression of SPATA6, which plays a vital role in the assembly of the sperm head-tail conjunction in humans. In addition, the infertility caused by loss-of-function mutation of SPATA20 might not be rescued by intracytoplasmic sperm injection (ICSI). Collectively, our findings suggested that SPATA20 might be required for sperm head-tail conjunction formation in humans, the nonfunction of which may lead to male infertility related to ASS. The discovery of the loss-of-function mutation in SPATA20 enriches the gene variant spectrum of human ASS, further contributing to improved diagnosis, genetic counseling and prognosis for male infertility.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Siyu Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gan Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yihong Yang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
9
|
The Male Mouse Meiotic Cilium Emanates from the Mother Centriole at Zygotene Prior to Centrosome Duplication. Cells 2022; 12:cells12010142. [PMID: 36611937 PMCID: PMC9818220 DOI: 10.3390/cells12010142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Cilia are hair-like projections of the plasma membrane with an inner microtubule skeleton known as axoneme. Motile cilia and flagella beat to displace extracellular fluids, playing important roles in the airways and reproductive system. On the contrary, primary cilia function as cell-type-dependent sensory organelles, detecting chemical, mechanical, or optical signals from the extracellular environment. Cilia dysfunction is associated with genetic diseases called ciliopathies and with some types of cancer. Cilia have been recently identified in zebrafish gametogenesis as an important regulator of bouquet conformation and recombination. However, there is little information about the structure and functions of cilia in mammalian meiosis. Here we describe the presence of cilia in male mouse meiotic cells. These solitary cilia formed transiently in 20% of zygotene spermatocytes and reached considerable lengths (up to 15-23 µm). CEP164 and CETN3 localization studies indicated that these cilia emanate from the mother centriole prior to centrosome duplication. In addition, the study of telomeric TFR2 suggested that cilia are not directly related to the bouquet conformation during early male mouse meiosis. Instead, based on TEX14 labeling of intercellular bridges in spermatocyte cysts, we suggest that mouse meiotic cilia may have sensory roles affecting cyst function during prophase I.
Collapse
|
10
|
Hoyer-Fender S. Development of the Connecting Piece in ODF1-Deficient Mouse Spermatids. Int J Mol Sci 2022; 23:ijms231810280. [PMID: 36142191 PMCID: PMC9499666 DOI: 10.3390/ijms231810280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
ODF1 is a major protein of the accessory fibres of the mammalian sperm tail. In addition, ODF1 is found in the connecting piece, a complex structure located at the posterior end of the nucleus that connects the sperm head and tail. The tight coupling of the sperm head and tail is critical for the progressive motility of the sperm to reach the oocyte for fertilisation. The depletion of ODF1 by homologous recombination in mice led to male infertility. Although sperm tails were present in the epididymis, no intact spermatozoa were found. Instead, the depletion of ODF1 resulted in sperm decapitation, suggesting that ODF1 is essential for the formation of the coupling apparatus and the tight linkage of the sperm head and tail. However, the development of the linkage complex in the absence of ODF1 has never been investigated. Here, I analysed the fine structure of the developing connecting piece by transmission electron microscopy. I show that the connecting piece develops as in wild-type spermatids. Structural abnormalities were not observed when ODF1 was absent. Thus, ODF1 is dispensable for the development of the connecting piece. However, the decapitation of ODF1-deficient spermatozoa indicates that the heads and tails of the spermatozoa are not linked, so that they separate when force is applied.
Collapse
Affiliation(s)
- Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology-Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|