1
|
Picard LP, Orazietti A, Tran DP, Tucs A, Hagimoto S, Qi Z, Huang SK, Tsuda K, Kitao A, Sljoka A, Prosser RS. Balancing G protein selectivity and efficacy in the adenosine A 2A receptor. Nat Chem Biol 2025; 21:71-79. [PMID: 39085516 DOI: 10.1038/s41589-024-01682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/23/2024] [Indexed: 08/02/2024]
Abstract
The adenosine A2A receptor (A2AR) engages several G proteins, notably Go and its cognate Gs protein. This coupling promiscuity is facilitated by a dynamic ensemble, revealed by 19F nuclear magnetic resonance imaging of A2AR and G protein. Two transmembrane helix 6 (TM6) activation states, formerly associated with partial and full agonism, accommodate the differing volumes of Gs and Go. While nucleotide depletion biases TM7 toward a fully active state in A2AR-Gs, A2AR-Go is characterized by a dynamic inactive/intermediate fraction. Molecular dynamics simulations reveal that the NPxxY motif, a highly conserved switch, establishes a unique configuration in the A2AR-Go complex, failing to stabilize the helix-8 interface with Gs, and adoption of the active state. The resulting TM7 dynamics hamper G protein coupling, suggesting kinetic gating may be responsible for reduced efficacy in the noncognate G protein complex. Thus, dual TM6 activation states enable greater diversity of coupling partners while TM7 dynamics dictate coupling efficacy.
Collapse
Affiliation(s)
- Louis-Philippe Picard
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada.
| | | | - Duy Phuoc Tran
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Andrejs Tucs
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Sari Hagimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Zhenzhou Qi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada
| | - Shuya Kate Huang
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada
| | - Koji Tsuda
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Adnan Sljoka
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | - R Scott Prosser
- Department of Chemical and Physical Sciences, University of Toronto Mississauga (UTM), Mississauga, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Song X, Singh M, Lee KE, Vinayagam R, Kang SG. Caffeine: A Multifunctional Efficacious Molecule with Diverse Health Implications and Emerging Delivery Systems. Int J Mol Sci 2024; 25:12003. [PMID: 39596082 PMCID: PMC11593559 DOI: 10.3390/ijms252212003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Natural caffeine is found in many plants, including coffee beans, cacao beans, and tea leaves. Around the world, many beverages, including coffee, tea, energy drinks, and some soft drinks, have this natural caffeine compound. This paper reviewed the results of meta-studies on caffeine's effects on chronic diseases. Of importance, many meta-studies have shown that regularly drinking caffeine or caffeinated coffee significantly reduces the risk of developing Alzheimer's disease, epilepsy, and Parkinson's disease. Based on the health supplements of caffeine, this review summarizes various aspects related to the application of caffeine, including its pharmacokinetics, and various functional health benefits of caffeine, such as its effects on the central nervous system. The importance of caffeine and its use in alleviating or treating cancer, diabetes, eye diseases, autoimmune diseases, and cardiovascular diseases is also discussed. Overall, consuming caffeine daily in drinks containing antioxidant and neuroprotective properties, such as coffee, prevents progressive neurodegenerative diseases, such as Alzheimer's and Parkinson's. Furthermore, to effectively deliver caffeine to the body, recently developed nanoformulations using caffeine, for instance, nanoparticles, liposomes, etc., are summarized along with regulatory and safety considerations for caffeine. The U.S. Department of Agriculture (USDA) and the Food and Drug Administration (FDA) recommended that healthy adults consume up to 400 mg of caffeine per day or 5~6 mg/kg body weight. Since a cup of coffee contains, on average, 100 to 150 mg of coffee, 1 to 3 cups of coffee may help prevent chronic diseases. Furthermore, this review summarizes various interesting and important areas of research on caffeine and its applications related to human health.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kyung Eun Lee
- Sunforce Inc., 208-31, Gumchang-ro, Yeungcheon-si 31882, Republic of Korea;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
3
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
4
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2024:10.1007/s12035-024-04333-y. [PMID: 39012443 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
5
|
Mei SY, Zhang N, Wang MJ, Lv PR, Liu Q. Microglial purinergic signaling in Alzheimer's disease. Purinergic Signal 2024:10.1007/s11302-024-10029-8. [PMID: 38910192 DOI: 10.1007/s11302-024-10029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.
Collapse
Affiliation(s)
- Shu-Ya Mei
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Ning Zhang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Meng-Jing Wang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Pei-Ran Lv
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| | - Qi Liu
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| |
Collapse
|
6
|
Pereira ADS, Bottari NB, Nauderer JN, Assmann CE, Copetti PM, Reichert KP, Mostardeiro VB, da Silveira MV, Morsch VMM, Schetinger MRC. Purinergic signaling influences the neuroinflammatory outcomes of a testosterone-derived synthetic in female rats: Resistance training protective effects on brain health. Steroids 2024; 203:109352. [PMID: 38128896 DOI: 10.1016/j.steroids.2023.109352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Physical exercise is recognized as a non-pharmacological approach to treat and protect against several neuroinflammatory conditions and thus to prevent brain disorders. However, the interest in ergogenic resources by athletes and bodybuilding practitioners is widespread and on the rise. These substances shorten the process of performance gain and improve aesthetics, having led to the prominent use and abuse of hormones in the past years. Recent evidence has shown that the purinergic system, composed of adenine nucleotides, nucleosides, enzymes, and receptors, participates in a wide range of processes within the brain, such as neuroinflammation, neuromodulation, and cellular communication. Here, we investigated the effects of the anabolic androgenic steroid (AAS) testosterone (TES) at a dose of 70 mg/kg/week in female rats and the neuroprotective effect of resistance exercise related to the purinergic system and oxidative stress parameters. Our findings showed a decrease in ATP and ADO hydrolysis in treated and trained animals. Furthermore, there was an increase in the density of purinoceptors (P2X7 and A2A) and inflammatory markers (IBA-1, NRLP3, CASP-1, IL-1β, and IL-6) in the cerebral cortex of animals that received AAS. On the other hand, exercise reversed neuroinflammatory parameters such as IBA-1, NLRP3, CASP-1, and IL-1β and improved antioxidant response and anti-inflammatory IL-10 cytokine levels. Overall, this study shows that the use of TES without indication or prescription disrupts brain homeostasis, as demonstrated by the increase in neuroinflammation, and that the practice of exercise can protect brain health.
Collapse
Affiliation(s)
- Aline da Silva Pereira
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Nathieli Bianchin Bottari
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jelson Norberto Nauderer
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Priscila Marquezan Copetti
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcylene Vieira da Silveira
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
8
|
Lopes CR, Silva AC, Silva HB, Canas PM, Agostinho P, Cunha RA, Lopes JP. Adenosine A 2A Receptor Up-Regulation Pre-Dates Deficits of Synaptic Plasticity and of Memory in Mice Exposed to Aβ 1-42 to Model Early Alzheimer's Disease. Biomolecules 2023; 13:1173. [PMID: 37627238 PMCID: PMC10452250 DOI: 10.3390/biom13081173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The intracerebroventricular (icv) injection of amyloid peptides (Aβ) models Alzheimer's disease (AD) in mice, as typified by the onset within 15 days of deficits of memory and of hippocampal long-term potentiation (LTP) that are prevented by the blockade of adenosine A2A receptors (A2AR). Since A2AR overfunction is sufficient to trigger memory deficits, we tested if A2AR were upregulated in hippocampal synapses before the onset of memory deficits to support the hypothesis that A2AR overfunction could be a trigger of AD. Six to eight days after Aβ-icv injection, mice displayed no alterations of hippocampal dependent memory; however, they presented an increased excitability of hippocampal synapses, a slight increase in LTP magnitude in Schaffer fiber-CA1 pyramid synapses and an increased density of A2AR in hippocampal synapses. A2AR blockade with SCH58261 (50 nM) normalized excitability and LTP in hippocampal slices from mice sacrificed 7-8 days after Aβ-icv injection. Fifteen days after Aβ-icv injection, mice displayed evident deficits of hippocampal-dependent memory deterioration, with reduced hippocampal CA1 LTP but no hyperexcitability and a sustained increase in synaptic A2AR, which blockade restored LTP magnitude. This shows that the upregulation of synaptic A2AR precedes the onset of deterioration of memory and of hippocampal synaptic plasticity, supporting the hypothesis that the overfunction of synaptic A2AR could be a trigger of memory deterioration in AD.
Collapse
Affiliation(s)
- Cátia R. Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - António C. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Henrique B. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| |
Collapse
|
9
|
Doher N, Davoudi V, Magaki S, Townley RA, Haeri M, Vinters HV. Illustrated Neuropathologic Diagnosis of Alzheimer's Disease. Neurol Int 2023; 15:857-867. [PMID: 37489360 PMCID: PMC10366902 DOI: 10.3390/neurolint15030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/26/2023] Open
Abstract
As of 2022, the prevalence of Alzheimer's disease (AD) among individuals aged 65 and older is estimated to be 6.2 million in the United States. This figure is predicted to grow to 13.8 million by 2060. An accurate assessment of neuropathologic changes represents a critical step in understanding the underlying mechanisms in AD. The current method for assessing postmortem Alzheimer's disease neuropathologic change follows version 11 of the National Alzheimer's Coordinating Center (NACC) coding guidebook. Ambiguity regarding steps in the ABC scoring method can lead to increased time or inaccuracy in staging AD. We present a concise overview of how this postmortem diagnosis is made and relate it to the evolving understanding of antemortem AD biomarkers.
Collapse
Affiliation(s)
- Nicholas Doher
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Vahid Davoudi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shino Magaki
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Ryan A Townley
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway City, KS 66205, USA
| | - Mohammad Haeri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- The University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Fairway City, KS 66205, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
- Department of Neurology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Francucci B, Angeloni S, Dal Ben D, Lambertucci C, Ricciutelli M, Spinaci A, Smirnov A, Volpini R, Buccioni M, Marucci G. Dual Anta-Inhibitors Targeting Protein Kinase CK1δ and A 2A Adenosine Receptor Useful in Neurodegenerative Disorders. Molecules 2023; 28:4762. [PMID: 37375315 DOI: 10.3390/molecules28124762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, the number of patients with neurodegenerative pathologies is estimated at over one million, with consequences also on the economic level. Several factors contribute to their development, including overexpression of A2A adenosine receptors (A2AAR) in microglial cells and up-regulation and post-translational alterations of some casein kinases (CK), among them, CK-1δ. The aim of the work was to study the activity of A2AAR and CK1δ in neurodegeneration using in-house synthesized A2A/CK1δ dual anta-inhibitors and to evaluate their intestinal absorption. Experiments were performed on N13 microglial cells, which were treated with a proinflammatory CK cocktail to simulate an inflammatory state typical of neurodegenerative diseases. Results showed that the dual anta-inhibitors have the ability to counteract the inflammatory state, even if compound 2 is more active than compound 1. In addition, compound 2 displayed an important antioxidant effect similar to the reference compound ZM241385. Since many known kinase inhibitors are very often unable to cross lipid bilayer membranes, the ability of A2A/CK1δ double anta-inhibitors to cross the intestinal barrier was investigated by an everted gut sac assay. HPLC analysis revealed that both compounds are able to cross the intestinal barrier, making them promising candidates for oral therapy.
Collapse
Affiliation(s)
- Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Simone Angeloni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Massimo Ricciutelli
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Aleksei Smirnov
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
11
|
Merighi S, Travagli A, Nigro M, Pasquini S, Cappello M, Contri C, Varani K, Vincenzi F, Borea PA, Gessi S. Caffeine for Prevention of Alzheimer's Disease: Is the A 2A Adenosine Receptor Its Target? Biomolecules 2023; 13:967. [PMID: 37371547 DOI: 10.3390/biom13060967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent kind of dementia with roughly 135 million cases expected in the world by 2050. Unfortunately, current medications for the treatment of AD can only relieve symptoms but they do not act as disease-modifying agents that can stop the course of AD. Caffeine is one of the most widely used drugs in the world today, and a number of clinical studies suggest that drinking coffee may be good for health, especially in the fight against neurodegenerative conditions such as AD. Experimental works conducted "in vivo" and "in vitro" provide intriguing evidence that caffeine exerts its neuroprotective effects by antagonistically binding to A2A receptors (A2ARs), a subset of GPCRs that are triggered by the endogenous nucleoside adenosine. This review provides a summary of the scientific data supporting the critical role that A2ARs play in memory loss and cognitive decline, as well as the evidence supporting the protective benefits against neurodegeneration that may be attained by caffeine's antagonistic action on these receptors. They are a novel and fascinating target for regulating and enhancing synaptic activity, achieving symptomatic and potentially disease-modifying effects, and protecting against neurodegeneration.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Travagli
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Nigro
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Pasquini
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Contri
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | | | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Analysis of ADORA2A rs5760423 and CYP1A2 rs762551 Genetic Variants in Patients with Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232214400. [PMID: 36430879 PMCID: PMC9697425 DOI: 10.3390/ijms232214400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Various studies have been conducted, exploring the genetic susceptibility of Alzheimer's disease (AD). Adenosine receptor subtype A2a (ADORA2A) and cytochrome P450 1A2 (CYP1A2) are implicated in pathways such as oxidative stress and caffeine metabolism, which are associated with AD. The aim of this study was to explore for any potential association between the ADORA2A rs5760423 and the CYP1A2 rs762551 genetic variants and AD. A case-control study was performed with a total of 654 subjects (327 healthy controls and 327 patients with AD). Five genetic models were assumed. We also examined the allele-allele combination of both variants. The value of 0.05 was considered as the statistical significance threshold. A statistically significant association was found between ADORA2A rs5760423 and AD, as the "T" allele was associated with increased AD risk in recessive (OR = 1.51 (1.03-2.21)) and log-additive (OR = 1.30 (1.04-1.62)) genetic modes. In the codominant model, the TT genotype was more prevalent compared to the GG genotype (OR = 1.71 (1.09-2.66)). The statistical significance was maintained after adjustment for sex. No association between CYP1A2 rs762551 or allele-allele combination and AD was detected. We provide preliminary indication for a possible association between the ADORA2A rs5760423 genetic polymorphism and AD.
Collapse
|
13
|
Franco R, Lillo A, Navarro G, Reyes-Resina I. The adenosine A 2A receptor is a therapeutic target in neurological, heart and oncogenic diseases. Expert Opin Ther Targets 2022; 26:791-800. [DOI: 10.1080/14728222.2022.2136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Saimaiti A, Zhou DD, Li J, Xiong RG, Gan RY, Huang SY, Shang A, Zhao CN, Li HY, Li HB. Dietary sources, health benefits, and risks of caffeine. Crit Rev Food Sci Nutr 2022; 63:9648-9666. [PMID: 35574653 DOI: 10.1080/10408398.2022.2074362] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary intake of caffeine has significantly increased in recent years, and beneficial and harmful effects of caffeine have been extensively studied. This paper reviews antioxidant and anti-inflammatory activities of caffeine as well as its protective effects on cardiovascular diseases, obesity, diabetes mellitus, cancers, and neurodegenerative and liver diseases. In addition, we summarize the side effects of long-term or excessive caffeine consumption on sleep, migraine, intraocular pressure, pregnant women, children, and adolescents. The health benefits of caffeine depend on the amount of caffeine intake and the physical condition of consumers. Moderate intake of caffeine helps to prevent and modulate several diseases. However, the long-term or over-consumption of caffeine can lead to addiction, insomnia, migraine, and other side effects. In addition, children, adolescents, pregnant women, and people who are sensitive to caffeine should be recommended to restrict/reduce their intake to avoid potential adverse effects.
Collapse
Affiliation(s)
- Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Merighi S, Nigro M, Travagli A, Pasquini S, Borea PA, Varani K, Vincenzi F, Gessi S. A 2A Adenosine Receptor: A Possible Therapeutic Target for Alzheimer's Disease by Regulating NLRP3 Inflammasome Activity? Int J Mol Sci 2022; 23:ijms23095056. [PMID: 35563447 PMCID: PMC9101264 DOI: 10.3390/ijms23095056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
The A2A adenosine receptor, a member of the P1 purinergic receptor family, plays a crucial role in the pathophysiology of different neurodegenerative illnesses, including Alzheimer’s disease (AD). It regulates both neurons and glial cells, thus modulating synaptic transmission and neuroinflammation. AD is a complex, progressive neurological condition that is the leading cause of dementia in the world’s old population (>65 years of age). Amyloid peptide-β extracellular accumulation and neurofibrillary tangles constitute the principal etiologic tracts, resulting in apoptosis, brain shrinkage, and neuroinflammation. Interestingly, a growing body of evidence suggests a role of NLRP3 inflammasome as a target to treat neurodegenerative diseases. It represents a tripartite multiprotein complex including NLRP3, ASC, and procaspase-1. Its activation requires two steps that lead with IL-1β and IL-18 release through caspase-1 activation. NLRP3 inhibition provides neuroprotection, and in recent years adenosine, through the A2A receptor, has been reported to modulate NLRP3 functions to reduce organ damage. In this review, we describe the role of NLRP3 in AD pathogenesis, both alone and in connection to A2A receptor regulation, in order to highlight a novel approach to address treatment of AD.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Manuela Nigro
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Alessia Travagli
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | | | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
- Correspondence:
| |
Collapse
|
16
|
Pathophysiological Role and Medicinal Chemistry of A 2A Adenosine Receptor Antagonists in Alzheimer's Disease. Molecules 2022; 27:molecules27092680. [PMID: 35566035 PMCID: PMC9102440 DOI: 10.3390/molecules27092680] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
The A2A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and postsynaptic level in striatum, cortex, hippocampus and its effects on glutamate release, microglia and astrocyte activation account for a crucial role in neurodegenerative diseases, including Alzheimer’s disease (AD). This ailment is considered the main form of dementia and is expected to exponentially increase in coming years. The pathological tracts of AD include amyloid peptide-β extracellular accumulation and tau hyperphosphorylation, causing neuronal cell death, cognitive deficit, and memory loss. Interestingly, in vitro and in vivo studies have demonstrated that A2A adenosine receptor antagonists may counteract each of these clinical signs, representing an important new strategy to fight a disease for which unfortunately only symptomatic drugs are available. This review offers a brief overview of the biological effects mediated by A2A adenosine receptors in AD animal and human studies and reports the state of the art of A2A adenosine receptor antagonists currently in clinical trials. As an original approach, it focuses on the crucial role of pharmacokinetics and ability to pass the blood–brain barrier in the discovery of new agents for treating CNS disorders. Considering that A2A receptor antagonist istradefylline is already commercially available for Parkinson’s disease treatment, if the proof of concept of these ligands in AD is confirmed and reinforced, it will be easier to offer a new hope for AD patients.
Collapse
|
17
|
Lai TH, Wenzel B, Moldovan RP, Brust P, Kopka K, Teodoro R. Automated radiosynthesis of the adenosine A 2A receptor-targeting radiotracer [ 18 F]FLUDA. J Labelled Comp Radiopharm 2022; 65:162-166. [PMID: 35288969 DOI: 10.1002/jlcr.3970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/28/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
[18 F]FLUDA is a selective radiotracer for in vivo imaging of the adenosine A2A receptor (A2A R) by positron emission tomography (PET). Promising preclinical results obtained by neuroimaging of mice and piglets suggest the translation of [18 F]FLUDA to human PET studies. Thus, we report herein a remotely controlled automated radiosynthesis of [18 F]FLUDA using a GE TRACERlab FX2 N radiosynthesizer. The radiotracer was obtained by a one-pot two-step radiofluorination procedure with a radiochemical yield of 9 ± 1%, a radiochemical purity of ≥ 99% and molar activities in the range of 69-333 GBq/μmol at the end of synthesis within a total synthesis time of approx. 95 min (n = 16). Altogether, we successfully established a reliable and reproducible procedure for the automated production of [18 F]FLUDA.
Collapse
Affiliation(s)
- Thu Hang Lai
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany.,ROTOP Pharmaka GmbH, Department of Research and Development, Dresden, Germany
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Rares-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Dresden, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| |
Collapse
|
18
|
Tang ML, Wen ZH, Wang JH, Wang ML, Zhang H, Liu XH, Jin L, Chang J. Discovery of Pyridone-Substituted Triazolopyrimidine Dual A 2A/A 1 AR Antagonists for the Treatment of Ischemic Stroke. ACS Med Chem Lett 2022; 13:436-442. [PMID: 35295085 PMCID: PMC8919384 DOI: 10.1021/acsmedchemlett.1c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
![]()
Ischemic stroke is
a complex systemic disease characterized by
high morbidity, disability, and mortality. The activation of the presynaptic
adenosine A2A and A1 receptors modifies a variety
of brain insults from excitotoxicity to stroke. Therefore, the discovery
of dual A2A/A1 adenosine receptor (AR)-targeting
therapeutic compounds could be a strategy for the treatment of ischemic
stroke. Inspired by two clinical phase III drugs, ASP-5854 (dual A2A/A1 AR antagonist) and preladenant (selective
A2A AR antagonist), and using the hybrid medicinal strategy,
we characterized novel pyridone-substituted triazolopyrimidine scaffolds
as dual A2A/A1 AR antagonists. Among them, compound 1a exerted excellent A2A/A1 AR binding
affinity (Ki = 5.58/24.2
nM), an antagonistic effect (IC50 = 5.72/25.9 nM), and
good metabolic stability in human liver microsomes, rat liver microsomes,
and dog liver microsomes. Importantly, compound 1a demonstrated
a dose–effect relationship in the oxygen-glucose deprivation/reperfusion
(OGD/R)-treated HT22 cell model. These findings support the development
of dual A2A/A1 AR antagonists as a potential
treatment for ischemic stroke.
Collapse
Affiliation(s)
- Mei-Lin Tang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zi-Hao Wen
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jing-Huan Wang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Mei-Ling Wang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Heyanhao Zhang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xin-Hua Liu
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Lin Jin
- Department of Anesthesia, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jun Chang
- School of Pharmacy, Human Phenome Institute, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
19
|
Merighi S, Borea PA, Varani K, Vincenzi F, Jacobson KA, Gessi S. A 2A Adenosine Receptor Antagonists in Neurodegenerative Diseases. Curr Med Chem 2022; 29:4138-4151. [PMID: 34844537 PMCID: PMC9148371 DOI: 10.2174/0929867328666211129122550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia worldwide, with approximately 6 million cases reported in America in 2020. The clinical signs of AD include cognitive dysfunction, apathy, anxiety and neuropsychiatric signs, and pathogenetic mechanisms that involve amyloid peptide-β extracellular accumulation and tau hyperphosphorylation. Unfortunately, current drugs to treat AD can provide only symptomatic relief but are not disease-modifying molecules able to revert AD progression. The endogenous modulator adenosine, through A2A receptor activation, plays a role in synaptic loss and neuroinflammation, which are crucial for cognitive impairment and memory damage. OBJECTIVE In this review, recent advances covering A2A adenosine receptor antagonists will be extensively reviewed, providing a basis for the rational design of future A2A inhibitors. METHODS Herein, the literature on A2A adenosine receptors and their role in synaptic plasticity and neuroinflammation, as well as the effects of A2A antagonism in animal models of AD and in humans, are reviewed. Furthermore, current chemical and structure-based strategies are presented. RESULTS Caffeine, the most widely consumed natural product stimulant and an A2A antagonist, improves human memory. Similarly, synthetic A2A receptor antagonists, as described in this review, may provide a means to fight AD. CONCLUSION This review highlights the clinical potential of A2A adenosine receptor antagonists as a novel approach to treat patients with AD.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy;,Address correspondence to these authors at the Department Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy; ; ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States;
| | | | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States,Address correspondence to these authors at the Department Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy; ; ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States;
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy;,Address correspondence to these authors at the Department Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy; ; ; Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States;
| |
Collapse
|