1
|
Li M, Wang R, Yan T, Tao X, Gao S, Wang Z, Chai Y, Qiu S, Chen W. Dual effects of DLG5 (disks large homolog 5 gene) modulation on chemotherapy-induced thrombocytopenia and nausea/vomiting via the hippo signalling pathway. Br J Pharmacol 2025; 182:1090-1106. [PMID: 39529470 DOI: 10.1111/bph.17391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The CAPEOX (combination of oxaliplatin and capecitabine) chemotherapy protocol is widely used for colorectal cancer treatment, but it can lead to chemotherapy-induced adverse effects (CRAEs). EXPERIMENTAL APPROACH To uncover the mechanisms and potential biomarkers for CRAE susceptibility, we performed whole-genome sequencing on normal colorectal tissue (CRT) before adjuvant chemotherapy. This is followed by in vivo and in vitro verifications for selected gene and CRAE pair. KEY RESULTS Our analysis revealed specific germline mutations linked to Grade 2 (or higher) chemotherapy-induced thrombocytopenia (CIT) and nausea/vomiting (CINV). Notably, both CRAEs were associated with mutations in the DLG5 gene. We found that DLG5 mutations related to CIT were associated with increased gene expression, while those associated with CINV were linked to suppressed gene expression, as indicated by the Genotype-Tissue Expression (GTEX) database. In megakaryocytes, overexpression of human DLG5 suppressed the hippo signalling pathway and induced YAP expression. In zebrafish, overexpression of human DLG5 not only reduced platelet production but also inhibited thrombus formation. Subsequent qPCR analysis revealed that DLG5 overexpression affected genes involved in cytoskeleton formation and alpha-granule formation, which could impact the normal generation of proplatelets. CONCLUSION AND IMPLICATIONS We identified a series of germline mutations associated with susceptibility to CIT and CINV. Of particular interest, we demonstrated that induced and suppressed DLG5 expression is respectively related to CIT and CINV. These findings shed light on the involvement of the hippo signalling pathway and DLG5 in the development of CRAEs, providing valuable insights into potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Mingming Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Rong Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yan
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yunsheng Chai
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Speziale P, Foster TJ, Arciola CR. The endothelium at the interface between tissues and Staphylococcus aureus in the bloodstream. Clin Microbiol Rev 2025:e0009824. [PMID: 39807893 DOI: 10.1128/cmr.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYStaphylococcus aureus is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels. The success of endothelial colonization and infection by S. aureus relies on its ability to express a wide array of cell wall-anchored and secreted virulence factors. Establishment of endothelial infection by the pathogen is a multistep process involving adhesion, invasion, extravasation, and dissemination of the bacterium into surrounding tissues. The process is dependent on the type of endothelium in different organs (tissues) and pathogenetic potential of the individual strains. In this review, we report an update on the organization of the endothelium in the vessels, the structure and function of the virulence factors of S. aureus, and the several aspects of bacteria-endothelial cell interactions. After these sections, we will discuss recent advances in understanding the specific mechanisms of infections that develop in the heart, bone and joints, lung, and brain. Finally, we describe how neutrophils bind to endothelial cells, migrate to the site of infection to kill bacteria in the tissues, and how staphylococci counteract neutrophils' actions. Knowledge of the molecular details of S. aureus-endothelial cell interactions will promote the development of new therapeutic strategies and tools to combat this formidable pathogen.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Carla Renata Arciola
- Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Gan Q, Chi H, Meng X, Tang X, Xing J, Sheng X, Zhan W. Von Willebrand Factor in Weibel-Palade Bodies of Endothelial Cells Involved in the Immune Response to Hirame Novirhabdovirus Infection in a Teleost Paralichthys olivaceus. JOURNAL OF FISH DISEASES 2024:e14069. [PMID: 39660701 DOI: 10.1111/jfd.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
von Willebrand factor (vWF) is a large multimeric sialoglycoprotein that plays key roles in normal haemostasis, inflammation regulation, angiogenesis and cancer metastasis in mammals. The gene, protein sequences and functions of vWF in flounder Paralichthys olivaceus (PovWF) were analysed in this study. PovWF possesses an 8550-bp open reading frame (ORF) that encodes a 2849 amino acid protein. PovWF mRNA is highly expressed in the heart and gill, followed by the intestine, skin, spleen, kidney, muscle and liver. PovWF positive cells are mainly endothelial cells (ECs), predominantly located along the inner lining of blood vessels, enclosing the bloodstream. After being infected with hirame novirhabdovirus (HIRRV), flounder exhibits a dark body colour, congested fins and visceral membranes. Histopathologic analysis revealed that the ECs of diseased fish had compromised integrity, accompanied by a significant increase in number of cells within blood vessels. Immunofluorescence and ultrastructural studies showed that virions infect ECs can induce morphological and functional alterations, which lead to the release of vWF and facilitate the migration of neutrophils into tissues to exert antiviral functions. This research pinpoints the role of vWF in the immune response to HIRRV infection in teleost. It offers an in-depth and all-encompassing understanding of the pathophysiological interaction between HIRRV and endothelial cells during invasive infections in fish.
Collapse
Affiliation(s)
- Qiujie Gan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xianghu Meng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
4
|
Snyder Y, Jana S. Innovative Substrate Design with Basement Membrane Components for Enhanced Endothelial Cell Function and Endothelization. Adv Healthc Mater 2024; 13:e2401150. [PMID: 39021293 DOI: 10.1002/adhm.202401150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Enhancing endothelial cell growth on small-diameter vascular grafts produced from decellularized tissues or synthetic substrates is pivotal for preventing thrombosis. While optimized decellularization protocols can preserve the structure and many components of the extracellular matrix (ECM), the process can still lead to the loss of crucial basement membrane proteins, such as laminin, collagen IV, and perlecan, which are pivotal for endothelial cell adherence and functional growth. This loss can result in poor endothelialization and endothelial cell activation causing thrombosis and intimal hyperplasia. To address this, the basement membrane's ECM is emulated on fiber substrates, providing a more physiological environment for endothelial cells. Thus, fibroblasts are cultured on fiber substrates to produce an ECM membrane substrate (EMMS) with basement membrane proteins. The EMMS then underwent antigen removal (AR) treatment to eliminate antigens from the membrane while preserving essential proteins and producing an AR-treated membrane substrate (AMS). Subsequently, human endothelial cells cultured on the AMS exhibited superior proliferation, nitric oxide production, and increased expression of endothelial markers of quiescence/homeostasis, along with autophagy and antithrombotic factors, compared to those on the decellularized aortic tissue. This strategy showed the potential of pre-endowing fiber substrates with a basement membrane to enable better endothelization.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
5
|
Rocans RP, Zarins J, Bine E, Mahauri I, Deksnis R, Citovica M, Donina S, Vanags I, Gravelsina S, Vilmane A, Rasa-Dzelzkaleja S, Mamaja B. Von Willebrand Factor Antigen, Biomarkers of Inflammation, and Microvascular Flap Thrombosis in Reconstructive Surgery. J Clin Med 2024; 13:5411. [PMID: 39336896 PMCID: PMC11432012 DOI: 10.3390/jcm13185411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Microvascular flap surgery has become a routine option for defect correction. The role of von Willebrand factor antigen (VWF:Ag) in the pathophysiology of flap complications is not fully understood. We aim to investigate the predictive value of VWF:Ag for microvascular flap complications and explore the relationship between chronic inflammation and VWF:Ag. Methods: This prospective cohort study included 88 adult patients undergoing elective microvascular flap surgery. Preoperative blood draws were collected on the day of surgery before initiation of crystalloids. The plasma concentration of VWF:Ag as well as albumin, neutrophil-to-lymphocyte ratio (NLR), interleukin-6, and fibrinogen were determined. Results: The overall complication rate was 27.3%, and true flap loss occurred in 11.4%. VWF:Ag levels were higher in true flap loss when compared to patients without complications (217.94 IU/dL [137.27-298.45] vs. 114.14 [95.67-132.71], p = 0.001). Regression analysis revealed the association between VWF:Ag and true flap loss at the cutoff of 163.73 IU/dL (OR 70.22 [10.74-485.28], p = 0.043). Increased VWF:Ag concentrations were linked to increases in plasma fibrinogen (p < 0.001), C-reactive protein (p < 0.001), interleukin-6 (p = 0.032), and NLR (p = 0.019). Conclusions: Preoperative plasma VWF:Ag concentration is linked to biomarkers of inflammation and may be valuable in predicting complications in microvascular flap surgery.
Collapse
Affiliation(s)
- Rihards Peteris Rocans
- Intensive Care Clinic, Riga East University Hospital, Hipokrata Street 2, LV-1079 Riga, Latvia;
- Department of Anaesthesia and Intensive Care, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia; (I.M.); (I.V.); (B.M.)
| | - Janis Zarins
- Department of Hand and Plastic Surgery, Microsurgery Centre of Latvia, Brivibas Street 410, LV-1024 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka Street 3, LV-1007 Riga, Latvia
| | - Evita Bine
- Intensive Care Clinic, Riga East University Hospital, Hipokrata Street 2, LV-1079 Riga, Latvia;
| | - Insana Mahauri
- Department of Anaesthesia and Intensive Care, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia; (I.M.); (I.V.); (B.M.)
| | - Renars Deksnis
- Surgical Oncology Clinic, Riga East University Hospital, Hipokrata Street 4, LV-1079 Riga, Latvia;
| | - Margarita Citovica
- Laboratory Department, Riga East University Hospital, Hipokrata Street 2, LV-1079 Riga, Latvia;
| | - Simona Donina
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites Street 5, LV-1067 Riga, Latvia; (S.D.); (S.G.); (A.V.); (S.R.-D.)
- Outpatient Department, Riga East University Hospital, Hipokrata Street 4, LV-1079 Riga, Latvia
| | - Indulis Vanags
- Department of Anaesthesia and Intensive Care, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia; (I.M.); (I.V.); (B.M.)
| | - Sabine Gravelsina
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites Street 5, LV-1067 Riga, Latvia; (S.D.); (S.G.); (A.V.); (S.R.-D.)
| | - Anda Vilmane
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites Street 5, LV-1067 Riga, Latvia; (S.D.); (S.G.); (A.V.); (S.R.-D.)
| | - Santa Rasa-Dzelzkaleja
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites Street 5, LV-1067 Riga, Latvia; (S.D.); (S.G.); (A.V.); (S.R.-D.)
| | - Biruta Mamaja
- Department of Anaesthesia and Intensive Care, Riga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia; (I.M.); (I.V.); (B.M.)
| |
Collapse
|
6
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Yuan J, Wu X, Zhao J, Ding Q, Dai J, Wang X, Lu Y, Li J. Molecular mechanisms and clinical manifestations of hereditary hemorrhagic telangiectasia. Thromb Res 2024; 241:109117. [PMID: 39151291 DOI: 10.1016/j.thromres.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION Hereditary Hemorrhagic Telangiectasia (HHT) is charactered by telangiectasia and arteriovenous malformations (AVMs). Recurrent visceral and mucocutaneous bleeding is frequently reported among HHT patients, while data on the prevalence of thrombosis remains limited. This study aims to describe the clinical manifestations and molecular biological characteristics of HHT patients. METHODS We conducted a retrospective study at Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine. A total of 24 HHT patients, observed between January 2019 and December 2023, were included. We recorded the biological, clinical, and therapeutic events, with particular attention to bleeding and thrombotic events. Gene mutation analysis and blood constituent measurements were performed. RESULTS The prevalence of bleeding among all HHT patients was 100 %, while thrombotic events were noted in 41.70 % of cases. Hepatic arteriovenous malformations (HAVMs) were identified in six patients, pulmonary arteriovenous malformations (PAVMs) in five patients, and cerebral arteriovenous malformations (CAVMs) in one patient. For patients with thrombosis, the discontinuation rates were 23.08 % for antiplatelet therapy and 33.33 % for anticoagulant therapy due to the increased risk of bleeding. Genetic mutations related to HHT were present in 16 patients, with ACVRL1 (activin A receptor-like type 1) mutations being the most frequent at 41.67 %, followed by ENG (endoglin) mutations at 20.83 %, and GDF2 (growth differentiation factor 2) mutations at 4.17 %. The incidence of PAVMs was 75.00 % in HHT1 patients with ENG mutations and 20 % in HHT2 patients with ACVRL1 mutations, while HAVMs occurred in 0 % and 40.00 % of these groups, respectively. Patients were divided into non-AVMs and AVMs groups. Compared to normal controls, von Willebrand factor (vWF) activity was significantly increased in all HHT patients (149.10 % vs. 90.65 %, P < 0.001). In the non-AVMs group, the median level of stromal cell-derived factor-1 (SDF-1) was significantly elevated (124.31 pg/mL vs. 2413.57 pg/mL, P < 0.05), while vWF antigen levels were markedly higher in the AVMs group (165.30 % vs. 130.60 %, P = 0.021). Further grouping of HHT patients based on bleeding and thrombosis phenotypes revealed that those with thrombosis had significantly higher median percentages of schistocytes (3.50 % vs. 0 %, P = 0.002), ferritin concentrations (318.50 μg/L vs. 115.50 μg/L, P = 0.001), and lactate dehydrogenase (LDH) levels (437 U/L vs. 105 U/L, P < 0.001). There were no significant differences in the activity of vWF, protein C (PC), protein S (PS), and factor VIII (FVIII) between the two groups. CONCLUSION This study highlighted the complex relationship between arteriovenous malformations and genetic mutations in HHT patients. A comprehensive assessment of bleeding and thrombosis risks should be conducted for each HHT patient, additionally, further clinical studies are needed to explore the risk factors for thrombosis and anticoagulant-related bleeding in HHT.
Collapse
Affiliation(s)
- Junwei Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialu Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiaming Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Transfusion Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Vorobev A, Bitsadze V, Yagubova F, Khizroeva J, Solopova A, Tretyakova M, Gashimova N, Grigoreva K, Einullaeva S, Drozhzhina M, Hajiyeva A, Khalilulina E, Cherepanov A, Kapanadze D, Egorova E, Kuneshko N, Gris JC, Elalamy I, Ay C, Makatsariya A. The Phenomenon of Thrombotic Microangiopathy in Cancer Patients. Int J Mol Sci 2024; 25:9055. [PMID: 39201740 PMCID: PMC11354439 DOI: 10.3390/ijms25169055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Thrombotic microangiopathy (TMA) encompasses a range of disorders characterized by blood clotting in small blood vessels, leading to organ damage. It can manifest as various syndromes, including thrombotic thrombocytopenic purpura (TTP), hemolytic-uremic syndrome (HUS), and others, each with distinct causes and pathophysiology. Thrombo-inflammation plays a significant role in TMA pathogenesis: inflammatory mediators induce endothelial injury and activation of platelet and coagulation cascade, contributing to microvascular thrombosis. Primary TMA, such as TTP, is primarily caused by deficient ADAMTS13 metalloproteinase activity, either due to antibody-mediated inhibition or intrinsic enzyme synthesis defects. In cancer patients, a significant reduction in ADAMTS13 levels and a corresponding increase in VWF levels is observed. Chemotherapy further decreased ADAMTS13 levels and increased VWF levels, leading to an elevated VWF/ADAMTS13 ratio and increased thrombotic risk. Drug-induced TMA (DITMA) can result from immune-mediated or non-immune-mediated mechanisms. Severe cases of COVID-19 may lead to a convergence of syndromes, including disseminated intravascular coagulation (DIC), systemic inflammatory response syndrome (SIRS), and TMA. Treatment of TMA involves identifying the underlying cause, implementing therapies to inhibit complement activation, and providing supportive care to manage complications. Plasmapheresis may be beneficial in conditions like TTP. Prompt diagnosis and treatment are crucial to prevent serious complications and improve outcomes.
Collapse
Affiliation(s)
- Alexander Vorobev
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Victoria Bitsadze
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Fidan Yagubova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Jamilya Khizroeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Antonina Solopova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Maria Tretyakova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Nilufar Gashimova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Kristina Grigoreva
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Sabina Einullaeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Maria Drozhzhina
- Faculty of General Medicine, Russian University of Medicine, 4th Dolgorukovskaya Str., 127006 Moscow, Russia;
| | - Aygun Hajiyeva
- Faculty of General Medicine, I.M. Sechenov First State Moscow Medical University Baku Branch, Huseyn Javid, Yasamal, Baku AZ1141, Azerbaijan;
| | - Emilia Khalilulina
- Faculty of General Medicine, Pirogov Russian National Research Medical University, Ulitsa Ostrovityanova 1, 117997 Moscow, Russia;
| | - Alexander Cherepanov
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Daredzhan Kapanadze
- Center of Pathology of Pregnancy and Hemostasis «Medlabi», 340112 Tbilisi, Georgia;
| | - Elena Egorova
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| | - Nart Kuneshko
- Moscow’s Region Odintsovo Maternity Hospital, 143003 Odintsovo, Russia;
| | - Jean-Christophe Gris
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
- Faculty of Pharmaceutical and Biological Sciences, Montpellier University, 34093 Montpellier, France
| | - Ismail Elalamy
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
- Department Hematology and Thrombosis Center, Medicine Sorbonne University, 75012 Paris, France
- Hospital Tenon, 4 Rue de la Chine, 75020 Paris, France
| | - Cihan Ay
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
- Department of Medicine I, Clinical Division of Hematology and Hemostaseology, Medical University of Vienna, 1080 Vienna, Austria
| | - Alexander Makatsariya
- Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.V.); (V.B.); (F.Y.); (J.K.); (A.S.); (M.T.); (K.G.); (S.E.); (A.C.); (E.E.); (J.-C.G.); (I.E.); (C.A.); (A.M.)
| |
Collapse
|
9
|
Snyder Y, Jana S. Influence of Substrate Structure and Associated Properties on Endothelial Cell Behavior in the Context of Behaviors Associated with Laminar Flow Conditions. ACS APPLIED BIO MATERIALS 2024; 7:4664-4678. [PMID: 38939951 DOI: 10.1021/acsabm.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
In order to treat most vascular diseases, arterial grafts are commonly employed for replacing small-diameter vessels, yet they often cause thrombosis. The growth of endothelial cells along the interior surfaces of these grafts (substrates) is critical to mitigate thrombosis. Typically, endothelial cells are cultured inside these grafts under laminar flow conditions to emulate the native environment of blood vessels and produce an endothelium. Alternatively, the substrate structure could have a similar influence on endothelial cell behavior as laminar flow conditions. In this study, we investigated whether substrates with aligned fiber structures could induce responses in human umbilical vein endothelial cells (HUVECs) akin to those elicited by laminar flow. Our observations revealed that HUVECs on aligned substrates displayed significant morphological changes, aligning parallel to the fibers, similar to effects reported under laminar flow conditions. Conversely, HUVECs on random substrates maintained their characteristic cobblestone appearance. Notably, cell migration was more significant on aligned substrates. Also, we observed that while vWF expression was similar between both substrates, the HUVECs on aligned substrates showed more expression of platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31), laminin, and collagen IV. Additionally, these cells exhibited increased gene expression related to critical functions such as proliferation, extracellular matrix production, cytoskeletal reorganization, autophagy, and antithrombotic activity. These findings indicated that aligned substrates enhanced endothelial growth and behavior compared to random substrates. These improvements are similar to the beneficial effects of laminar flow on endothelial cells, which are well-documented compared to static or turbulent flow conditions.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
10
|
Song C, Kong F, Nong H, Cai L, Tian Y, Hou H, Wang L, Qiu X. Ammonium Persulfate-Loaded Carboxylic Gelatin-Methacrylate Nanoparticles Promote Cardiac Repair by Activating Epicardial Epithelial-Mesenchymal Transition via Autophagy and the mTOR Pathway. ACS NANO 2023; 17:20246-20261. [PMID: 37782701 DOI: 10.1021/acsnano.3c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Restoring damaged myocardial tissue with therapeutic exogenous cells still has some limitations, such as immunological rejection, immature cardiac properties, risk of tumorigenicity, and a low cell survival rate in the ischemic myocardium microenvironment. Activating the endogenous stem cells with functional biomaterials might overcome these limitations. Research has highlighted the multiple differentiation potential of epicardial cells via epithelial-mesenchymal transition (EMT) in both heart development and cardiac regeneration. In our previous research, a carboxylic gelatin-methacrylate (carbox-GelMA) nanoparticle (NP) was fabricated to carry ammonium persulfate (APS), and APS-loaded carbox-GelMA NPs (NPs/APS) could drive the EMT of MCF-7 cells in vitro and promote cancer cell migration and invasion in vivo. The present study explored the roles of functional NPs/APS in the EMT of Wilms' tumor 1-positive (WT1+) epicardial cells and in the repair of myocardial infarction (MI). The WT1+ epicardial cells transformed into endothelial-like cells after being treated with NPs/APS in vitro, and the cardiac functions were improved significantly after injecting NPs/APS into the infarcted hearts in vivo. Furthermore, simultaneous activation of both autophagy and the mTOR pathway was confirmed during the NPs/APS-induced EMT process in WT1+ epicardial cells. Together, this study highlights the function of NPs/APS in the repair of MI.
Collapse
Affiliation(s)
- Chen Song
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangdong, Guangzhou 510900, China
| | - Fanxuan Kong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Huijia Nong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Liu Cai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangdong, Guangzhou 510900, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China
| |
Collapse
|
11
|
Seidizadeh O, Cairo A, Baronciani L, Valenti L, Peyvandi F. Population-based prevalence and mutational landscape of von Willebrand disease using large-scale genetic databases. NPJ Genom Med 2023; 8:31. [PMID: 37845247 PMCID: PMC10579253 DOI: 10.1038/s41525-023-00375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Von Willebrand disease (VWD) is a common bleeding disorder caused by mutations in the von Willebrand factor gene (VWF). The true global prevalence of VWD has not been accurately established. We estimated the worldwide and within-population prevalence of inherited VWD by analyzing exome and genome data of 141,456 individuals gathered by the genome Aggregation Database (gnomAD). We also extended our data deepening by mining the main databases containing VWF variants i.e., the Leiden Open Variation Database (LOVD) and the Human Gene Mutation Database (HGMD) with the goal to explore the global mutational spectrum of VWD. A total of 4,313 VWF variants were identified in the gnomAD population, of which 505 were predicted to be pathogenic or already reported to be associated with VWD. Among the 282,912 alleles analyzed, 31,785 were affected by the aforementioned variants. The global prevalence of dominant VWD in 1000 individuals was established to be 74 for type 1, 3 for 2A, 3 for 2B and 6 for 2M. The global prevalences for recessive VWD forms (type 2N and type 3) were 0.31 and 0.7 in 1000 individuals, respectively. This comprehensive analysis provided a global mutational landscape of VWF by means of 927 already reported variants in the HGMD and LOVD datasets and 287 novel pathogenic variants identified in the gnomAD. Our results reveal that there is a considerably higher than expected prevalence of putative disease alleles and variants associated with VWD and suggest that a large number of VWD patients are undiagnosed.
Collapse
Affiliation(s)
- Omid Seidizadeh
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Andrea Cairo
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Luciano Baronciani
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine, Milan, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
12
|
Fontcuberta-Rigo M, Nakamura M, Puigbò P. Phylobone: a comprehensive database of bone extracellular matrix proteins in human and model organisms. Bone Res 2023; 11:44. [PMID: 37580331 PMCID: PMC10425349 DOI: 10.1038/s41413-023-00281-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023] Open
Abstract
The bone extracellular matrix (ECM) contains minerals deposited on highly crosslinked collagen fibrils and hundreds of non-collagenous proteins. Some of these proteins are key to the regulation of bone formation and regeneration via signaling pathways, and play important regulatory and structural roles. However, the complete list of bone extracellular matrix proteins, their roles, and the extent of individual and cross-species variations have not been fully captured in both humans and model organisms. Here, we introduce the most comprehensive resource of bone extracellular matrix (ECM) proteins that can be used in research fields such as bone regeneration, osteoporosis, and mechanobiology. The Phylobone database (available at https://phylobone.com ) includes 255 proteins potentially expressed in the bone extracellular matrix (ECM) of humans and 30 species of vertebrates. A bioinformatics pipeline was used to identify the evolutionary relationships of bone ECM proteins. The analysis facilitated the identification of potential model organisms to study the molecular mechanisms of bone regeneration. A network analysis showed high connectivity of bone ECM proteins. A total of 214 functional protein domains were identified, including collagen and the domains involved in bone formation and resorption. Information from public drug repositories was used to identify potential repurposing of existing drugs. The Phylobone database provides a platform to study bone regeneration and osteoporosis in light of (biological) evolution, and will substantially contribute to the identification of molecular mechanisms and drug targets.
Collapse
Affiliation(s)
- Margalida Fontcuberta-Rigo
- Medicity Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520, Turku, Finland
| | - Miho Nakamura
- Medicity Research Laboratory, Faculty of Medicine, University of Turku, Tykistökatu 6, 20520, Turku, Finland.
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 1010062, Japan.
- Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 9808579, Japan.
| | - Pere Puigbò
- Department of Biology, University of Turku, 20500, Turku, Finland.
- Eurecat, Technology Center of Catalonia. Nutrition and Health Unit, Reus, 43204, Catalonia, Spain.
- Department of Biochemistry and Biotechnology, University Rovira i Virgili, 43007, Tarragona, Catalonia, Spain.
| |
Collapse
|
13
|
Roche R, Odeh NH, Andar AU, Tulapurkar ME, Roche JA. Protection against Severe Illness versus Immunity-Redefining Vaccine Effectiveness in the Aftermath of COVID-19. Microorganisms 2023; 11:1963. [PMID: 37630523 PMCID: PMC10459411 DOI: 10.3390/microorganisms11081963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Anti-SARS-CoV-2 vaccines have played a pivotal role in reducing the risk of developing severe illness from COVID-19, thus helping end the COVID-19 global public health emergency after more than three years. Intriguingly, as SARS-CoV-2 variants emerged, individuals who were fully vaccinated did get infected in high numbers, and viral loads in vaccinated individuals were as high as those in the unvaccinated. However, even with high viral loads, vaccinated individuals were significantly less likely to develop severe illness; this begs the question as to whether the main effect of anti-SARS-CoV-2 vaccines is to confer protection against severe illness or immunity against infection. The answer to this question is consequential, not only to the understanding of how anti-SARS-CoV-2 vaccines work, but also to public health efforts against existing and novel pathogens. In this review, we argue that immune system sensitization-desensitization rather than sterilizing immunity may explain vaccine-mediated protection against severe COVID-19 illness even when the SARS-CoV-2 viral load is high. Through the lessons learned from COVID-19, we make the case that in the disease's aftermath, public health agencies must revisit healthcare policies, including redefining the term "vaccine effectiveness."
Collapse
Affiliation(s)
- Renuka Roche
- Occupational Therapy Program, School of Health Sciences, College of Health and Human Services, Eastern Michigan University, Ypsilanti, MI 48197, USA;
| | - Nouha H. Odeh
- Ph.D. Program in Immunology and Microbiology, Department of Biochemistry, Microbiology & Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Abhay U. Andar
- Baltimore County, Translational Life Science Technology, University of Maryland, Rockville, MD 20850, USA;
| | - Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph A. Roche
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Peng N, Geng Y, Ouyang J, Liu S, Yuan F, Wan Y, Chen W, Yu B, Tang Y, Su L, Liang H, Wang JH, Liu J. Endothelial glycocalyx injury is involved in heatstroke-associated coagulopathy and protected by N-acetylcysteine. Front Immunol 2023; 14:1159195. [PMID: 37350963 PMCID: PMC10283401 DOI: 10.3389/fimmu.2023.1159195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Damage to endothelial glycocalyx (EGCX) can lead to coagulation disorders in sepsis. Heat stroke (HS) resembles sepsis in many aspects; however, it is unclear whether EGCX injury is involved in its pathophysiology. The purpose of this study was to examine the relationship between the damage of EGCX and the development of coagulation disorders during HS. Methods We retrospectively collected 159 HS patients and analyzed coagulation characteristics and prognosis of HS patients with or without disseminated intravascular coagulation (DIC). We also replicated a rat HS model and measured coagulation indexes, pulmonary capillary EGCX injury in HS rats. Finally, we evaluated the effect of the antioxidant N-acetylcysteine (NAC) on HS-initiated EGCX injury and coagulation disorders. Results Clinical data showed that HS patients complicated with DIC had a higher risk of death than HS patients without DIC. In a rat HS model, we found that rats subjected to heat stress developed hypercoagulability and platelet activation at the core body temperature of 43°C, just before the onset of HS. At 24 h of HS, the rats showed a consumptive hypo-coagulation state. The pulmonary capillary EGCX started to shed at 0 h of HS and became more severe at 24 h of HS. Importantly, pretreatment with NAC substantially alleviated EGCX damage and reversed the hypo-coagulation state in HS rats. Mechanically, HS initiated reactive oxidative species (ROS) generation, while ROS could directly cause EGCX damage. Critically, NAC protected against EGCX injury by attenuating ROS production in heat-stressed or hydrogen peroxide (H2O2)-stimulated endothelial cells. Discussion Our results indicate that the poor prognosis of HS patients correlates with severe coagulation disorders, coagulation abnormalities in HS rats are associated with the damage of EGCX, and NAC improves HS-induced coagulopathy, probably through its protection against EGCX injury by preventing ROS generation.
Collapse
Affiliation(s)
- Na Peng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Emergency Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Yan Geng
- Department of Gastroenterology, 923 Military Hospital of China, Nanning, Guangxi, China
| | - Jiafu Ouyang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuai Liu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangfang Yuan
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenda Chen
- Department of Emergency Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Baojun Yu
- Department of Intensive Care Unit, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong, China
| | - Youqing Tang
- Department of Emergency Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Lei Su
- Department of Intensive Care Unit, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Huang X, Liang F, Huang B, Luo H, Shi J, Wang L, Peng J, Chen Y. On-chip real-time impedance monitoring of hiPSC-derived and artificial basement membrane-supported endothelium. Biosens Bioelectron 2023; 235:115324. [PMID: 37201240 DOI: 10.1016/j.bios.2023.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023]
Abstract
Recent advances have shown the high sensibility of electrochemical impedance spectroscopy in real-time monitoring of cell barriers on a chip. Here, we applied this method to the investigation of human induced pluripotent stem cell (hiPSC) derived and artificial basement membrane (ABM) supported endothelial barrier. The ABM was obtained by self-assembling type IV collagen and laminin with a monolayer of crosslinked gelatin nanofibers. The hiPSCs were differentiated into brain microvascular endothelial cells (BMECs) and then plated on the ABM. After incubation for two days, the ABM-BMEC assembly was placed as a tissue insert into a microfluidic device for culture and real-time impedance monitoring over days. We found a significantly enhanced stability of the BMEC barrier in a serum-free and bromodeoxyuridine (BrdU) containing culture medium compared to the conventional culture due to the restricted cell proliferation. We also found that the BMEC barrier was sensitive to stimuli such as thrombin and that the change of the barrier impedance was mainly due to the change of the cell layer resistance. We can thus advocate this method to investigate the integrity of the cell barrier and the barrier-based assays.
Collapse
Affiliation(s)
- Xiaochen Huang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Feng Liang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Boxin Huang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Haoyue Luo
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001, Paris, France
| | - Juan Peng
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France.
| | - Yong Chen
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, Rue Lhomond, 75005, Paris, France.
| |
Collapse
|
16
|
Liu CQ, Gao YJ, Lin GX, Liang JZ, Li YF, Wang YC, Chen WY, Chen WJ. Identification of thrombotic biomarkers in orthopedic surgery patients by plasma proteomics. J Orthop Surg Res 2023; 18:222. [PMID: 36944974 PMCID: PMC10028780 DOI: 10.1186/s13018-023-03672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Due to the poor specificity of D-dimer, more accurate thrombus biomarkers are clinically needed to improve the diagnostic power of VTE. METHODS The plasma samples were classified into low-risk group (n = 6) and high-risk group (n = 6) according to the Caprini Thrombosis Risk Assessment Scale score. Data-independent acquisition mass spectrometry (DIA-MS) was performed to identify the proteins in the 12 plasma samples. Bioinformatics analysis including volcano plot, heatmap, KEGG pathways and chord diagram analysis were drawn to analyze the significantly differentially expressed proteins (DEPs) between the two groups. Then, another 26 plasma samples were collected to verify the key proteins as potential biomarkers of VTE in orthopedic surgery patients. RESULTS A total of 371 proteins were identified by DIA-MS in 12 plasma samples. Volcano plotting showed that there were 30 DEPs. KEGG pathway enrichment analysis revealed that the DEPs were majorly involved in the blood coagulation pathway. The chord diagram analysis demonstrated that proteins SAA1, VWF, FLNA, ACTB, VINC, F13B, F13A and IPSP in the DEPs were significantly related to blood coagulation. VWF and F13B were selected for validation experiments. ELISA test showed that, as compared with those in the low-risk group, the level of VWF in the high-risk sera was significantly increased. CONCLUSIONS The level of VWF in the high-risk group of thrombosis after orthopedic surgery was significantly higher than that in the low-risk group of preoperative thrombosis, suggesting that VWF may be used as a potential thrombus biomarker in orthopedic surgery patients.
Collapse
Affiliation(s)
- Cui-Qing Liu
- School of Nursing, Jinan University, Guangzhou, 510613, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yu-Jing Gao
- School of Nursing, Jinan University, Guangzhou, 510613, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Geng-Xiong Lin
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jun-Ze Liang
- College of Life Science and Technology, Jinan University, Guangzhou , China
| | - Yan-Fei Li
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yi-Chun Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wen-Yan Chen
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wei-Ju Chen
- School of Nursing, Jinan University, Guangzhou, 510613, China.
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Radnay Z, Illés Á, Udvardy M, Prohászka Z, Sinkovits G, Csányi MC, Kellermayer M, Kiss A, Hársfalvi J. Von Willebrand Factor and Platelet Levels before Conditioning Chemotherapy Indicate Bone Marrow Regeneration following Autologous Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2022; 28:830.e1-830.e7. [PMID: 36058547 DOI: 10.1016/j.jtct.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
Abstract
Autologous hematopoietic stem cell transplantation (HSCT) is often complicated by hemostatic and thrombotic events associated with endothelial cell injury. Thrombotic complications are affected by a disturbed balance between platelets, circulating von Willebrand factor (VWF), and its specific protease, ADAMTS13. HSCT-associated endothelial dysfunction, impaired hemostasis, and inflammation are interrelated processes, and research on the complex interplay of conditioning regimens from engraftment to bone marrow regeneration remains intensive. This prospective observational study comparing lymphoma and multiple myeloma (MM) patients who underwent autologous HSCT explored how platelet count, VWF level, ADAMTS13 activity, and C-reactive protein (CRP) level as potential markers (1) vary in response to therapy, (2) differ between the 2 groups, and (3) correlate with the remission state at 100 days after HSCT. We correlated the quantitative changes in platelet count and levels of VWF, ADAMTS13, and CRP with one another during HSCT and in the remission state in 45 patients with lymphoma and 59 patients with MM who underwent autologous HSCT between 2010 and 2013 at the University of Debrecen. Samples were collected at the start of conditioning chemotherapy, on the day of stem cell transplantation, and at 5, 11, and 100 days following HSCT. CRP levels peaked when platelet counts dropped to a minimum, and these changes were much more pronounced in the lymphoma group. VWF level was the highest, with lower ADAMTS13 activity, at platelet engraftment in both patient groups equally. Diagnostic evidence indicative of thrombotic complications was not found. In the lymphoma group, VWF level prior to conditioning had statistically significant correlations with platelet count, CRP level, and hemoglobin concentration at the time of bone marrow regeneration (P < .001) and during the remission state (P = .034). In the MM group, platelet count before conditioning was correlated with platelet count (P < .001) and white blood cell count (P = .012) at the time of bone marrow regeneration. The statistically significant correlation of the markers at the time of bone marrow regeneration with the preconditioning VWF levels in lymphoma and with the preconditioning platelet counts in MM might indicate the clinical significance of the bone marrow niches of arterioles and megakaryocytes, respectively, where the stem cells are located and regulated. Because preconditioning VWF levels are associated with remission after HSCT in lymphoma patients, VWF should be screened before conditioning, along with the markers used in HSCT protocols, to optimize personalized treatment and reduce therapeutic risks.
Collapse
Affiliation(s)
- Zita Radnay
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Illés
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Udvardy
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Prohászka
- Research Laboratory, 3rd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - György Sinkovits
- Research Laboratory, 3rd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mária Csilla Csányi
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Kiss
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jolán Hársfalvi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Hungary; Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
18
|
Xu X, Feng Y, Jia Y, Zhang X, Li L, Bai X, Jiao L. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and meta-analysis. Thromb Res 2022; 218:83-98. [PMID: 36027630 PMCID: PMC9385270 DOI: 10.1016/j.thromres.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Endotheliopathy and coagulopathy appear to be the main causes for critical illness and death in patients with coronavirus disease 2019 (COVID-19). The adhesive ligand von Willebrand factor (VWF) has been involved in immunothrombosis responding to endothelial injury. Here, we reviewed the current literature and performed meta-analyses on the relationship between both VWF and its cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13) with the prognosis of COVID-19. METHODS We searched MEDLINE, Cochrane Library, Web of Science, and EMBASE databases from inception to 4 March 2022 for studies analyzing the relationship between VWF-related variables and composite clinical outcomes of patients with COVID-19. The VWF-related variables analyzed included VWF antigen (VWF:Ag), VWF ristocetin cofactor (VWF:Rco), ADAMTS13 activity (ADAMTS13:Ac), the ratio of VWF:Ag to ADAMTS13:Ac, and coagulation factor VIII (FVIII). The unfavorable outcomes were defined as mortality, intensive care unit (ICU) admission, and severe disease course. We used random or fixed effects models to create summary estimates of risk. Risk of bias was assessed based on the principle of the Newcastle-Ottawa Scale. RESULTS A total of 3764 patients from 40 studies were included. The estimated pooled means indicated increased plasma levels of VWF:Ag, VWF:Rco, and VWF:Ag/ADAMTS13:Ac ratio, and decreased plasma levels of ADAMTS13:Ac in COVID-19 patients with unfavorable outcomes when compared to those with favorable outcomes (composite outcomes or subgroup analyses of non-survivor versus survivor, ICU versus non-ICU, and severe versus non-severe). In addition, FVIII were higher in COVID-19 patients with unfavorable outcomes. Subgroup analyses indicated that FVIII was higher in patients admitting to ICU, while there was no significant difference between non-survivors and survivors. CONCLUSIONS The imbalance of the VWF-ADAMTS13 axis (massive quantitative and qualitative increases of VWF with relative deficiency of ADAMTS13) is associated with poor prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China.
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Yitong Jia
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China; Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China..
| |
Collapse
|
19
|
Kamstrup P, Sand JMB, Ulrik CS, Janner J, Rønn CP, Rønnow SR, Leeming DJ, Jensen SG, Wilcke T, Mathioudakis AG, Miravitlles M, Lapperre T, Bendstrup E, Frikke-Schmidt R, Murray DD, Itenov T, Bossios A, Nielsen SD, Vestbo J, Biering-Sørensen T, Karsdal M, Jensen JU, Sivapalan P. Biomarkers of Clot Activation and Degradation and Risk of Future Major Cardiovascular Events in Acute Exacerbation of COPD: A Cohort Sub-Study in a Randomized Trial Population. Biomedicines 2022; 10:biomedicines10082011. [PMID: 36009558 PMCID: PMC9405886 DOI: 10.3390/biomedicines10082011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiovascular diseases are common in patients with chronic obstructive pulmonary disease (COPD). Clot formation and resolution secondary to systemic inflammation may be a part of the explanation. The aim was to determine whether biomarkers of clot formation (products of von Willebrand Factor formation and activation) and clot resolution (product of fibrin degeneration) during COPD exacerbation predicted major cardiovascular events (MACE). The cohort was based on clinical data and biobank plasma samples from a trial including patients admitted with an acute exacerbation of COPD (CORTICO-COP). Neo-epitope biomarkers of formation and the activation of von Willebrand factor (VWF-N and V-WFA, respectively) and cross-linked fibrin degradation (X-FIB) were assessed using ELISAs in EDTA plasma at the time of acute admission, and analyzed for time-to-first MACE within 36 months, using multivariable Cox proportional hazards models. In total, 299/318 participants had samples available for analysis. The risk of MACE for patients in the upper quartile of each biomarker versus the lower quartile was: X-FIB: HR 0.98 (95% CI 0.65–1.48), VWF-N: HR 1.56 (95% CI 1.07–2.27), and VWF-A: HR 0.78 (95% CI 0.52–1.16). Thus, in COPD patients with an acute exacerbation, VWF-N was associated with future MACE and warrants further studies in a larger population.
Collapse
Affiliation(s)
- Peter Kamstrup
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
- Correspondence:
| | | | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julie Janner
- Department of Respiratory Medicine, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Christian Philip Rønn
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| | | | | | - Sidse Graff Jensen
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| | - Torgny Wilcke
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexander G. Mathioudakis
- The North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M13 9PL, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Therese Lapperre
- Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
- Department of Pulmonary Medicine, Antwerp University Hospital, Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Antwerp, Belgium
| | - Elisabeth Bendstrup
- Department Respiratory Disease and Allergy, Aarhus University Hospital, 8000 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Daniel D. Murray
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Theis Itenov
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Susanne Dam Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jørgen Vestbo
- The North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M13 9PL, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK
| | - Tor Biering-Sørensen
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens-Ulrik Jensen
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Pradeesh Sivapalan
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| |
Collapse
|
20
|
Huh S, Kang C, Park JE, Nam D, Kim SI, Seol A, Choi K, Hwang D, Yu MH, Chung HH, Lee SW, Kang UB. Novel Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Uncovered by Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2022; 21:2146-2159. [PMID: 35939567 DOI: 10.1021/acs.jproteome.2c00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) represents the major histological type of ovarian cancer, and the lack of effective screening tools and early detection methods significantly contributes to the poor prognosis of HGSOC. Currently, there are no reliable diagnostic biomarkers for HGSOC. In this study, we performed liquid chromatography data-independent acquisition tandem mass spectrometry (MS) on depleted serum samples from 26 HGSOC cases and 24 healthy controls (HCs) to discover potential HGSOC diagnostic biomarkers. A total of 1,847 proteins were identified across all samples, among which 116 proteins showed differential expressions between HGSOC patients and HCs. Network modeling showed activations of coagulation and complement cascades, platelet activation and aggregation, neutrophil extracellular trap formation, toll-like receptor 4, insulin-like growth factor, and transforming growth factor β signaling, as well as suppression of lipoprotein assembly and Fc gamma receptor activation in HGSOC. Based on the network model, we prioritized 28 biomarker candidates and validated 18 of them using targeted MS assays in an independent cohort. Predictive modeling showed a sensitivity of 1 and a specificity of 0.91 in the validation cohort. Finally, in vitro functional assays on four potential biomarkers (FGA, VWF, ARHGDIB, and SERPINF2) suggested that they may play an important role in cancer cell proliferation and migration in HGSOC. All raw data were deposited in PRIDE (PXD033169).
Collapse
Affiliation(s)
- Sunghyun Huh
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Chaewon Kang
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 136-701, Republic of Korea
| | - Ji Eun Park
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Dowoon Nam
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 136-701, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Aeran Seol
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul 02843, Republic of Korea
| | - Kyerim Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Bioinformatics Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeong-Hee Yu
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang-Won Lee
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 136-701, Republic of Korea
| | - Un-Beom Kang
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| |
Collapse
|
21
|
Tikhe CV, Cardoso-Jaime V, Dong S, Rutkowski N, Dimopoulos G. Trypsin-like Inhibitor Domain (TIL)-Harboring Protein Is Essential for Aedes aegypti Reproduction. Int J Mol Sci 2022; 23:ijms23147736. [PMID: 35887084 PMCID: PMC9319116 DOI: 10.3390/ijms23147736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Cysteine-rich trypsin inhibitor-like domain (TIL)-harboring proteins are broadly distributed in nature but remain understudied in vector mosquitoes. Here we have explored the biology of a TIL domain-containing protein of the arbovirus vector Aedes aegypti, cysteine-rich venom protein 379 (CRVP379). CRVP379 was previously shown to be essential for dengue virus infection in Ae. aegypti mosquitoes. Gene expression analysis showed CRVP379 to be highly expressed in pupal stages, male testes, and female ovaries. CRVP379 expression is also increased in the ovaries at 48 h post-blood feeding. We used CRISPR-Cas9 genome editing to generate two mutant lines of CRVP379 with mutations inside or outside the TIL domain. Female mosquitoes from both mutant lines showed severe defects in their reproductive capability; mutant females also showed differences in their follicular cell morphology. However, the CRVP379 line with a mutation outside the TIL domain did not affect male reproductive performance, suggesting that some CRVP379 residues may have sexually dimorphic functions. In contrast to previous reports, we did not observe a noticeable difference in dengue virus infection between the wild-type and any of the mutant lines. The importance of CRVP379 in Ae. aegypti reproductive biology makes it an interesting candidate for the development of Ae. aegypti population control methods.
Collapse
Affiliation(s)
- Chinmay Vijay Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Natalie Rutkowski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
22
|
Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int J Mol Sci 2022; 23:ijms23147697. [PMID: 35887039 PMCID: PMC9318195 DOI: 10.3390/ijms23147697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The challenges and issues surrounding the use of EPCs and the current paradigm being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. It has been observed that controversies have emerged regarding the isolation techniques and classification and origin of EPCs. This manuscript attempts to highlight the concept of EPCs in a sequential manner, from the initial discovery to the present (origin, sources of EPCs, isolation, and identification techniques). Human and murine EPC marker diversity is also discussed. Additionally, this manuscript is aimed at summarizing our current and future prospects regarding the crosstalk of EPCs with the biology of hematopoietic cells and culture techniques in the context of regeneration-associated cells (RACs).
Collapse
|
23
|
Gori T. Restenosis after Coronary Stent Implantation: Cellular Mechanisms and Potential of Endothelial Progenitor Cells (A Short Guide for the Interventional Cardiologist). Cells 2022; 11:cells11132094. [PMID: 35805178 PMCID: PMC9265311 DOI: 10.3390/cells11132094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Coronary stents are among the most common therapies worldwide. Despite significant improvements in the biocompatibility of these devices throughout the last decades, they are prone, in as many as 10–20% of cases, to short- or long-term failure. In-stent restenosis is a multifactorial process with a complex and incompletely understood pathophysiology in which inflammatory reactions are of central importance. This review provides a short overview for the clinician on the cellular types responsible for restenosis with a focus on the role of endothelial progenitor cells. The mechanisms of restenosis are described, along with the cell-based attempts made to prevent it. While the focus of this review is principally clinical, experimental evidence provides some insight into the potential implications for prevention and therapy of coronary stent restenosis.
Collapse
Affiliation(s)
- Tommaso Gori
- German Center for Cardiac and Vascular Research (DZHK) Standort Rhein-Main, Department of Cardiology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
24
|
Luo F, Li R, Zheng H, Xu Y, Yang L, Qu C, Hong G, Wan Q. Differentiation of Bone Mesenchymal Stem Cells Into Vascular Endothelial Cell-Like Cells Using Functionalized Single-Walled Carbon Nanotubes. Front Bioeng Biotechnol 2022; 10:913080. [PMID: 35747494 PMCID: PMC9209768 DOI: 10.3389/fbioe.2022.913080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Carbon nanotubes (CNTs) are a promising bioactive scaffold for bone regeneration because of their superior mechanical and biological properties. Vascularization is crucial in bone tissue engineering, and insufficient vascularization is a long-standing problem in tissue-engineered scaffolds. However, the effect of CNTs on vascularization is still minimal. In the current study, pristine single-walled carbon nanotubes (SWNTs) were purified to prepare different ratios of SWNTs/EDC composites, and their surface morphology and physicochemical properties of SWNTs/EDC were studied. Furthermore, the effect of SWNTs/EDC on vascularization was investigated by inducing the differentiation of bone mesenchymal stem cells (BMSCs) into vascular endothelial cell-like cells (VEC-like cells). Results showed that SWNTs/EDC composite was successfully prepared, and EDC was embedded in the SWNTs matrix and uniformly distributed throughout the composites. The AFM, FTIR spectra, and Raman results confirmed the formation of SWNTs/EDC composites. Besides, the surface topography of the SWNTs/EDC composites presents a rough surface, which may positively affect cell function. In vitro cell culture revealed that SWNTs and SWNTs/EDC composites exhibited excellent biocompatibility and bioactivity. The SWNTs/EDC composite at mass/volume ratios 1:10 had the best enhancement of proliferation and differentiation of BMSCs. Moreover, after culture with SWNTs/EDC composite, approximately 78.3% ± 4.2% of cultured cells are double-positive for FITC-UEA-1 and DiI-Ac-LDL double staining. Additionally, the RNA expression of representative endothelial cell markers VEGF, VEGF-R2, CD31, and vWF in the SWNTs/EDC composite group was significantly higher than those in the control and SWNTs group. With the limitation of our study, the results suggested that SWNTs/EDC composite can promote BMSCs differentiation into VEC-like cells and positively affect angiogenesis and bone regeneration.
Collapse
Affiliation(s)
- Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ruyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Huaping Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Linxin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Changxing Qu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
- *Correspondence: Guang Hong, ; Qianbing Wan,
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Guang Hong, ; Qianbing Wan,
| |
Collapse
|
25
|
Kohli S, Shahzad K, Jouppila A, Holthöfer H, Isermann B, Lassila R. Thrombosis and Inflammation—A Dynamic Interplay and the Role of Glycosaminoglycans and Activated Protein C. Front Cardiovasc Med 2022; 9:866751. [PMID: 35433860 PMCID: PMC9008778 DOI: 10.3389/fcvm.2022.866751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Hemostasis, thrombosis, and inflammation are tightly interconnected processes which may give rise to thrombo-inflammation, involved in infectious and non-infectious acute and chronic diseases, including cardiovascular diseases (CVD). Traditionally, due to its hemostatic role, blood coagulation is isolated from the inflammation, and its critical contribution in the progressing CVD is underrated, until the full occlusion of a critical vessel occurs. Underlying vascular injury exposes extracellular matrix to deposit platelets and inflammatory cells. Platelets being key effector cells, bridge all the three key processes (hemostasis, thrombosis, and inflammation) associated with thrombo-inflammation. Under physiological conditions, platelets remain in an inert state despite the proximity to the endothelium and other cells which are decorated with glycosaminoglycan (GAG)-rich glycocalyx (GAGs). A pathological insult to the endothelium results in an imbalanced blood coagulation system hallmarked by increased thrombin generation due to losses of anticoagulant and cytoprotective mechanisms, i.e., the endothelial GAGs enhancing antithrombin, tissue factor pathway-inhibitor (TFPI) and thrombomodulin-protein C system. Moreover, the loss of GAGs promotes the release of mediators, such as von Willebrand factor (VWF), platelet factor 4 (PF4), and P-selectin, both locally on vascular surfaces and to circulation, further enhancing the adhesion of platelets to the affected sites. Platelet-neutrophil interaction and formation of neutrophil extracellular traps foster thrombo-inflammatory mechanisms exacerbating the cardiovascular disease course. Therefore, therapies which not only target the clotting mechanisms but simultaneously or independently convey potent cytoprotective effects hemming the inflammatory mechanisms are expected to provide clinical benefits. In this regard, we review the cytoprotective protease activated protein C (aPC) and its strong anti-inflammatory effects thereby preventing the ensuing thrombotic complications in CVD. Furthermore, restoring GAG-like vasculo-protection, such as providing heparin-proteoglycan mimetics to improve regulation of platelet and coagulation activity and to suppress of endothelial perturbance and leukocyte-derived pro-inflammatory cytokines, may provide a path to alleviate thrombo-inflammatory disorders in the future. The vascular tissue-modeled heparin proteoglycan mimic, antiplatelet and anticoagulant compound (APAC), dual antiplatelet and anticoagulant, is an injury-targeting and locally acting arterial antithrombotic which downplays collagen- and thrombin-induced and complement-induced activation and protects from organ injury.
Collapse
Affiliation(s)
- Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- *Correspondence: Shrey Kohli,
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Annukka Jouppila
- Clinical Research Institute HUCH, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harry Holthöfer
- Zentrum für Innere Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Riitta Lassila
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Aplagon Ltd., Helsinki, Finland
- Riitta Lassila,
| |
Collapse
|
26
|
Tarnawski AS, Ahluwalia A. Endothelial cells and blood vessels are major targets for COVID-19-induced tissue injury and spreading to various organs. World J Gastroenterol 2022; 28:275-289. [PMID: 35110950 PMCID: PMC8771611 DOI: 10.3748/wjg.v28.i3.275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) infected so far over 250 million people and caused the death of over 5 million worldwide. Aging, diabetes, and cardiovascular diseases, conditions with preexisting impaired endothelial functions predispose to COVID-19. While respiratory epithelium is the main route of virus entry, the endothelial cells (ECs) lining pulmonary blood vessels are also an integral part of lung injury in COVID-19 patients. COVID-19 not only affects the lungs and respiratory system but also gastrointestinal (GI) tract, liver, pancreas, kidneys, heart, brain, and skin. Blood vessels are likely conduits for the virus dissemination to these distant organs. Importantly, ECs are also critical for vascular regeneration during injury/lesions healing and restoration of vascular network. The World Journal of Gastroenterology has published in last two years over 67 outstanding papers on COVID-19 infection with a focus on the GI tract, liver, pancreas, etc., however, the role of the endothelial and vascular components as major targets for COVID-19-induced tissue injury, spreading to various organs, and injury healing have not been sufficiently emphasized. In the present article, we focus on these subjects and on current treatments including the most recent oral drugs molnupiravir and paxlovid that show a dramatic, significant efficacy in controlling severe COVID-19 infection.
Collapse
Affiliation(s)
- Andrzej S Tarnawski
- Gastroenterology Research Department, University of California Irvine and the Veterans Administration Long Beach Healthcare System, Long Beach, CA 90822, United States
| | - Amrita Ahluwalia
- Research Service, Veterans Administration Long Beach Healthcare System, Long Beach, CA 90822, United States
| |
Collapse
|