1
|
Ramsridhar S, Rajkumar C, Balasubramaniam M, Anandan S, Sabesan M, Jayamani L. The Promising Role of Plant-Derived Lectins in Oral Cancer Therapeutics: A Systematic Review. Cureus 2024; 16:e75910. [PMID: 39830560 PMCID: PMC11739538 DOI: 10.7759/cureus.75910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Oral cancer (OC) continues to pose a significant global health challenge, marked by high morbidity and mortality rates despite advances in diagnosis and treatment. Numerous novel potential anticancer drugs have been evaluated, many of which are derived from natural sources, such as microorganisms, plants, and animals. Among these, plant lectins - a distinctive group of proteins and glycoproteins with strong biological activity - have garnered considerable attention over the years. Several plant lectins can trigger selective apoptotic cancer cell death or possess antiproliferative properties. The objective of this systematic review was to provide insight into the potential applications of plant lectins in the treatment of OC. Plant lectins suppress cancer cells by inducing apoptosis and/or autophagy by modulating various signalling pathways such as the caspase family, mitochondrial-mediated ROS-p38-p53 pathway, PI3K/Akt, and Wnt/β-catenin to inhibit OC. Multiple lectins have been shown to exhibit anticancer properties in cell cultures and in vivo. Polygonatum cyrtonema lectin, Maackia amurensis seed lectin, abrus agglutinin, wheat germ agglutinin, mistletoe lectin, and concanavalin A are among the plant lectins with the highest potential for anticancer activities. This review provides an overview of the current understanding of the role of lectins in cancer diagnosis and therapy, highlighting their potential applications and underlying mechanisms.
Collapse
Affiliation(s)
- Saranya Ramsridhar
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Chennai, IND
| | - Chandini Rajkumar
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Chennai, IND
| | | | - Soumya Anandan
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Mythili Sabesan
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Logeswari Jayamani
- Department of Oral Pathology, Meenakshi Ammal Dental College, Chennai, IND
| |
Collapse
|
2
|
Carbone D, Gallo C, Nuzzo G, Barra G, Dell'Isola M, Affuso M, Follero O, Albiani F, Sansone C, Manzo E, d'Ippolito G, Fontana A. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:34. [PMID: 37779162 PMCID: PMC10542626 DOI: 10.1007/s13659-023-00401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Immunogenic Cell Death (ICD) represents a mechanism of enhancing T cell-driven response against tumor cells. The process is enabled by release of damage-associated molecular patterns (DAMPs) and cytokines by dying cells. Based on molecular studies and clinical marker assessment, ICD can be a new target for cancer chemotherapy hitherto restricted to a few conventional anticancer drugs. In view of the development of small molecules in targeted cancer therapy, we reported the preliminary evidence on the role of the natural product lepadin A (1) as a novel ICD inducer. Here we describe the ICD mechanism of lepadin A (1) by proving the translocation of the protein calreticulin (CRT) to the plasma membrane of human A2058 melanoma cells. CRT exposure is an ICD marker in clinical studies and was associated with the activation of the intrinsic apoptotic pathway in A2058 cells with lepadin A (1). After the treatment, the tumour cells acquired the ability to activate dendritic cells (DCs) with cytokine release and costimulatory molecule expression that is consistent with a phenotypic profile committed to priming T lymphocytes via a CD91-dependent mechanism. The effect of lepadin A (1) was dose-dependent and comparable to the response of the chemotherapy drug doxorubicin (2), a well-established ICD inducer.
Collapse
Affiliation(s)
- Dalila Carbone
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Carmela Gallo
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy.
| | - Genoveffa Nuzzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Giusi Barra
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Mario Dell'Isola
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Mario Affuso
- Department of Biology, University of Naples "Federico II", Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Olimpia Follero
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Federica Albiani
- Department of Biology, University of Naples "Federico II", Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, University of Naples "Federico II", Villa Comunale, 80121, Naples, Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Giuliana d'Ippolito
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
- Department of Biology, University of Naples "Federico II", Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| |
Collapse
|
3
|
Li L, Su H, Ji Y, Zhu F, Deng J, Bai X, Li H, Liu X, Luo Y, Lin B, Liu T, Lu Y. Deciphering Cell-Cell Interactions with Integrative Single-Cell Secretion Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301018. [PMID: 37186381 PMCID: PMC10323649 DOI: 10.1002/advs.202301018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Cell-cell interactions are the fundamental behaviors to regulate cellular activities. A comprehensive evaluation of intercellular interactions requires direct profiling of various signaling behaviors simultaneously at the single-cell level, which remains lacking. Herein, an integrative single-cell secretion analysis platform is presented to profile different secreted factors (four proteins, three extracellular vesicles (EV) phenotypes), spatial distances, and migration information (distances and direction) simultaneously from high-throughput paired single cells using an antibody-barcode microchip. Applying the platform to analyze the tumor-stromal and tumor-immune interactions with the human oral squamous cell carcinoma (OSCC) cell lines and primary OSCC cells reveals that the initial distances between cells would determine their migratory distances and direction to approach stable organization. The cell-cell in close proximity enhances protein secretions while attenuating EV secretions. Migration has a more profound correlation with protein secretions than EV secretions, in which absolute migration distance affects protein secretions significantly but not the direction. These findings highlight the significance of spatial organization in regulating cell signaling behaviors and demonstrate that the integrative single-cell secretion profiling platform is well-suited for a comprehensive dissection of intercellular communication and interactions, providing new avenues for understanding cell-cell interaction biology and how different signaling behaviors coordinate within the tumor microenvironment.
Collapse
Affiliation(s)
- Linmei Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Key Laboratory for Reactive Chemistry on Solid SurfacesInstitute of Physical ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haoran Su
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- College of StomatologyDalian Medical UniversityDalianLiaoning116044China
| | - Yahui Ji
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Fengjiao Zhu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Jiu Deng
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Xue Bai
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Huibing Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Xianming Liu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Yong Luo
- School of Pharmaceutical Science and TechnologyDalian University of TechnologyDalianLiaoning116024China
| | - Bingcheng Lin
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Tingjiao Liu
- Department of Oral PathologyShanghai Stomatological Hospital & School of StomatologyFudan UniversityTianjin Road No.2, Huangpu DistrictShanghai200001China
- Shanghai Key Laboratory of Craniomaxillofacial Development and DiseasesFudan UniversityTianjin Road No.2, Huangpu DistrictShanghai200001China
| | - Yao Lu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| |
Collapse
|
4
|
Villarreal PP, Pal R, Qiu S, Coblens O, Villasante-Tezanos A, Resto V, McCammon S, Vargas G. Label-Free Imaging and Histo-Optical Evaluation of Head and Neck Cancers with Multiphoton Autofluorescence Microscopy. Cancers (Basel) 2023; 15:1302. [PMID: 36831646 PMCID: PMC9953923 DOI: 10.3390/cancers15041302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Depth-resolved label-free optical imaging by the method of multiphoton autofluorescence microscopy (MPAM) may offer new ways to examine cellular and extracellular atypia associated with epithelial squamous cell carcinoma (SCC). MPAM was evaluated for its ability to identify cellular and microstructural atypia in head and neck tissues from resected discarded tumor tissue. Three-dimensional image volumes were obtained from tissues from the floor of the mouth, tongue, and larynx, and were then processed for histology. MPAM micrographs were evaluated for qualitative metrics of cell atypia and quantitative measures associated with nuclear pleomorphism. Statistical analyses correlated MPAM endpoints with histological grade from each imaged site. Cellular overcrowding, discohesion, anisonucleosis, and multinucleated cells, as observed through MPAM, were found to be statistically associated with dysplasia and SCC grading, but not in histologically benign regions. A quantitative measure of the coefficient of variance in nuclear size in SCC and dysplasia was statistically elevated above histologically benign regions. MPAM also allowed for the identification of cellular heterogeneity across transitional areas and other features, such as inflammatory infiltrates. In the future, MPAM could be evaluated for the non-invasive detection of neoplasia, possibly as an adjunct to traditional conventional examination and biopsy.
Collapse
Affiliation(s)
- Paula Patricia Villarreal
- The Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rahul Pal
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Suimin Qiu
- Department of Pathology, Division of Surgical Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Orly Coblens
- Department of Otolaryngology, Head & Neck Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alejandro Villasante-Tezanos
- Department of Biostatistics and Data Science, School for Public and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vicente Resto
- Department of Otolaryngology, Head & Neck Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Susan McCammon
- Department of Otolaryngology, Head & Neck Surgery Oncology Division, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gracie Vargas
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|