1
|
Ibrahim D, Khater SI, Sherkawy HS, Elgamal A, Hasan AA, Muhammed AA, Farag MFM, Eissa SA, Ismail TA, Eissa HM, Eskandrani AA, Alansari WS, El-Emam MMA. Protective Role of Nano-encapsulated Bifidobacterium breve, Bacilllus coagulans, and Lactobacillus plantarum in Colitis Model: Insights Toward Propagation of Short-Chain Fatty Acids and Reduction of Exaggerated Inflammatory and Oxidative Response. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10472-y. [PMID: 39900879 DOI: 10.1007/s12602-025-10472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Irritable bowel disease (IBD), also known as ulcerative colitis and Crohn's disease, is a chronic inflammatory disorder affecting millions of people worldwide. Herein, nano-encapsulated multi-strain probiotics formulation, comprising Bifidobacterium breve DSM24732 and B. coagulans SANK 70258 and L. plantarum DSM24730 (BBLNPs) is used as an effective intervention technique for attenuating IBD through gut microenvironment regulation. The efficacy of the prophylactic role of BBLNPs in alleviating injury induced by dextran sulfate sodium (DSS) was evaluated by assessing oxidative and inflammatory responses, levels of short-chain fatty acids (SCFAs) and their regulation on GPR41/43 pathway, expression of genes related to tight-junctions and autophagy, immunohistochemistry of IL1β and GPR43, and histological examination of inflamed colonic tissue. The severity of clinical signs and paracellular permeability to FITC (fluorescein isothiocyanate)-labeled dextran was significantly decreased after BBLNP treatment. Reduction of oxidative stress-associated biomarkers (MDA, ROS, and H2O2) and acceleration of antioxidant enzyme activities (SOD, CAT, and GSH-Px) were noted in the BBLNP-treated group. Subsiding of inflammatory markers (TNF-α, IL-18, IL-6, TRL-4, CD-8, NLRP3, and caspase 1) and upregulation of tight-junction-related genes (occludin and JAM) was detected in BBLNPs. Administration of BBLNPs remarkably resulted in a higher level of SCFAs which parrel with colonic upregulation of GPR41 and GPR43 expression compared to DSS-treated rats. Notable modulation of autophagy-related genes (p62, mTOR, LC3, and Beclin-1) was identified post BBLNP treatment. The mRNA expressions of p62 and mTOR were significantly downregulated, while LC3 and Beclin-1 were upregulated after prophylactic treatment with BBLNPs. Immune-stained labeled cells showed lower expression of IL-1β and higher expression levels of GPR43 in BBLNPs compared to the DSS-induced group. The intestinal damage caused by DSSwas effectively mitigated by oral BBLNP treatment, as supported by the restoration of healthy colonic tissue architecture. The findings suggest that BBLNPs have a promising avenue in the remission of IBD by modulating inflammation, oxidative stress, microbial metabolites such as SCFAs, and autophagy.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hoda S Sherkawy
- Department of Medical Biochemistry, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Asmaa A Hasan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Asmaa A Muhammed
- Department of Medical Physiology, Faculty of Medicine, Aswan University, Aswan, 81511, Egypt
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samar A Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hemmat M Eissa
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Chen L, Kong X, Zhou R, Hu J, Zhou R, Song Z, Tang Z, Wang M. Proteomics reveals the pharmacological mechanism of flavonoids from Astragali Complanati Semen in preventing chronic liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155910. [PMID: 39059265 DOI: 10.1016/j.phymed.2024.155910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Total flavonoids from Astragali Complanati Semen (TFACS), the main active ingredients in Astragali Complanati Semen (ACS), have been shown to have a protective effect on chronic liver injury (CLI), but the hepatoprotective targets and signalling pathways involved are unclear. PURPOSE The aim of our study was to identify the anti-CLI targets and signalling pathways of TFACS and to comprehensively elucidate its mechanism of action via proteomics analysis combined with in vivo and in vitro experiments. METHODS A CLI mouse model was generated via intraperitoneal injection of carbon tetrachloride (CCl4) (CCl4: olive oil = 1:4, 2 ml/kg, twice a week for 6 weeks). The hepatoprotective effect of TFACS was assessed by observing the pathological structure of the liver and analysing indicators of liver function. The key pathways and targets related to the hepatoprotective effect of TFACS were identified via 4D-label-free quantitative proteomics technology and further verified via in vivo indicator validation and in vitro cell experiments. RESULTS TFACS administration significantly normalized the histopathological structure and function of the liver, decreased the levels of inflammatory factors and oxidative stress indicators, and reduced the iron staining area and the levels of hepcidin and iron in the liver compared with those in the CLI model. A total of 424 differentially expressed proteins (DEPs) were identified between the TFACS and model groups, and these DEPs were enriched in the focal adhesion, PI3K-Akt, and ferroptosis pathways. Akt1, Pik3ca, NF-κB p65, Itga5, Itgb5, Itga6, Prkca, Fn1, Tfrc, and Vdac3 were identified as key targets of TFACS. TFACS administration significantly reversed the changes in the gene and protein expression of the key targets compared with those in the model group. In addition, TFACS treatment significantly reduced the levels of inflammatory cytokines and inhibited Akt1, NF-κB p65 and FAK activation in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. In an erastin-induced l-O2 ferroptosis cell model, treatment with TFACS normalized the mitochondrial structure, reduced the protein levels of Tfrc and Vdac3, inhibited lipid peroxidation, and reduced the amount of Fe2+ in the mitochondria. CONCLUSION TFACS protected against CLI, and its mechanism of action may be related to inhibition of the focal adhesion, PI3K/Akt and ferroptosis signalling pathways.
Collapse
Affiliation(s)
- Lin Chen
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Xin Kong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, PR China
| | - Ruina Zhou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, PR China
| | - Jinhang Hu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Rui Zhou
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Zhongxing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China; Beijing University of Chinese Medicine, Beijing 100700, PR China.
| | - Mei Wang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research, & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712083, PR China; Academic Development Office, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
3
|
Guo J, Le Y, Yuan A, Liu J, Chen H, Qiu J, Wang C, Dou X, Yuan X, Lu D. Astragaloside IV ameliorates cisplatin-induced liver injury by modulating ferroptosis-dependent pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118080. [PMID: 38521426 DOI: 10.1016/j.jep.2024.118080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.
Collapse
Affiliation(s)
- Jianan Guo
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Aini Yuan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Jing Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Hang Chen
- Department of Medical Research Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China.
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Xingyu Yuan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Dezhao Lu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
4
|
Bekhit AA, Beshay ON, Fawzy MA, Abdel-Hafez SMN, Batiha GES, Ataya FS, Fathy M. Curative Effect of AD-MSCs against Cisplatin-Induced Hepatotoxicity in Rats is Potentiated by Azilsartan: Targeting Oxidative Stress, MAPK, and Apoptosis Signaling Pathways. Stem Cells Int 2023; 2023:6767735. [PMID: 37908315 PMCID: PMC10615573 DOI: 10.1155/2023/6767735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/02/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Despite its clinical value, cisplatin (CISP) is complicated by marked hepatotoxicity via inducing oxidative stress, inflammatory, and apoptotic pathways. This study aims to explore the protective impact of azilsartan (AZIL), an antihypertensive drug, in addition to adipose tissue-derived mesenchymal stem cells (AD-MSCs) on CISP-induced hepatotoxicity. After characterization and labeling of AD-MSCs by PKH26 dye, 54 Wistar male albino rats were randomly divided into nine groups: I (CONT), II (AZIL.H), III (CISP), IV (CISP + AZIL.L), V (CISP + AZIL.H), VI (CISP + AD-MSCs), VII (CISP + AZIL.L + AD-MSCs), VIII (CISP + AZIL.H + AD-MSCs), and IX (CISP + VITA C). Serum alanine aminotransferase (ALT), alanine aminotransferase (AST), and albumin levels were determined. Assessment of reactive oxygen species, malondialdehyde, and glutathione contents, and superoxide dismutase activity and histopathological evaluations were done on hepatic tissue. Quantitative real-time PCR was utilized to estimate the expression of TNF-α and IL-6 genes. Cell homing of labeled AD-MSCs to the liver tissues was investigated. Hepatic expression of JNK1/2, ERK1/2, p38, Bax, Bcl-2, and cleaved caspase-3 proteins was investigated by western blot analysis. CISP elevated serum ALT and AST activities, reduced albumin level, and remarkably changed the hepatic architecture. It increased the expression TNF-α and IL-6 genes, raised the expression of JNK1/2, ERK1/2, p38, Bax, and cleaved caspase-3 proteins, and diminished the Bcl-2 protein. By contrast, treatment of animals with either AZIL or AD-MSCs dramatically reduced the effects of CISP injection. Moreover, treatment with combination therapy (AZIL.L or H + AD-MSCs) considerably mitigated all previously mentioned alterations superior to AZIL or AD-MSCs alone, which might be attributed to the AZIL-enhanced homing ability of AD-MSCs into the injured liver tissue. In conclusion, the present findings demonstrated that AZIL improves the hepatoprotective potential of AD-MSCs against CISP-induced hepatotoxicity by modulating oxidative stress, mitogen-activated protein kinase, and apoptotic pathways.
Collapse
Affiliation(s)
| | - Olivia N. Beshay
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Michael A. Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box, 2455, Riyadh 11451, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
5
|
Guo J, Yin J, Liu P, Zhang X, Wei J, Wang M, Xiao Y, Zhen Y, Lin Y, Li J. Glycyrrhizin arginine salt protects against cisplation-induced acute liver injury by repressing BECN1-mediated ferroptosis. Front Pharmacol 2023; 14:1219486. [PMID: 37745084 PMCID: PMC10511756 DOI: 10.3389/fphar.2023.1219486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
The study aimed to investigate the protective effects and biological mechanisms of glycyrrhizin arginine salt (Gly-Arg) against cisplatin (Cis)-induced liver injury. Our data showed that Gly-Arg improved Cis-induced liver injury. Further study showed that BECN1 (beclin1) and LC3-II/LC3-I protein expression was significantly increased in primary hepatocytes and mouse liver tissues after Cis treatment, but Gly-Arg reduced the protein levels of BECN1 and LC3-II/LC3-I in primary hepatocytes and mouse liver tissues. Also, Gly-Arg improved indicators related to Cis-induced ferroptosis. Furthermore, Cis increased colocalization of lysosomal membrane-associated protein 1A (LAMP1) with ferritin heavy chain 1 (FTH1) in primary mouse hepatocytes, while Gly-Arg intervention attenuated this colocalization in primary hepatocytes. More improtantly, Cis enhanced the formation of the BECN1-xCT complex, thus inhibiting solute carrier family 7 member 11 (SLC7A11, xCT) and glutathione peroxidase-4 (GPX4) activity. In contrast, Gly-Arg intervention disrupted the formation of this complex. However, Gly-Arg alleviated Cis-induced liver injury in mice by preventing autophagic death and ferroptosis through the inhibition of BECN1-xCT complex formation.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiameng Yin
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Pu Liu
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingjun Wang
- College of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanxia Xiao
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongzhan Zhen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Shi M, Zhang J, Li M, Zhao Y, Guo Y, Xu J, Liu R, Li Z, Ren D, Liu P. Liquiritigenin Confers Liver Protection by Enhancing NRF2 Signaling through Both Canonical and Non-canonical Signaling Pathways. J Med Chem 2023; 66:11324-11334. [PMID: 37534604 DOI: 10.1021/acs.jmedchem.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Oxidative stress plays a critical role in drug-induced liver injury. In recent years, liquiritigenin (LQ), a natural flavonoid distributed in Glycyrrhizae Radix et Rhizoma (Gan Cao), shows protective effects against oxidative hepatotoxicity. However, the underlying mechanism remains unclear. In this study, we mainly investigated the role of NRF2, a core transcription factor in oxidative stress, in LQ-induced hepatoprotection. Our results indicated that the function of LQ to eliminate reactive oxygen species in liver cells was dependent on NRF2 activation. Both a canonical signaling pathway and a non-canonical signaling pathway are involved in LQ-induced NRF2 activation. LQ induced NRF2 activation in a KEAP1-C151-dependent manner partially. Meanwhile, LQ led to the blockage of autophagic flux and upregulation of p62, which competitively bound with KEAP1 and conferred NRF2 activation in a KEAP1-C151-independent manner. Totally, our study reveals a novel molecular mechanism underlying the hepatoprotection of LQ, providing a new insight into the pathogenesis and therapeutic strategy of oxidative liver injury.
Collapse
Affiliation(s)
- Mengjiao Shi
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jian Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Miaomiao Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Yaping Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Guo
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiayi Xu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Key Laboratory of Environment and Genes Related To Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China
| |
Collapse
|
7
|
Awadalla A, Hamam ET, Mostafa SA, Mahmoud SA, Elazab KM, El Nakib AM, Eldesoqui M, El-Sherbiny M, Ammar OA, Al-Serwi RH, Saleh MA, Sarhan A, Ali M. Hepatoprotective Effects of Hyaluronic Acid-Preconditioned Bone Marrow Mesenchymal Stem Cells against Liver Toxicity via the Inhibition of Apoptosis and the Wnt/β-Catenin Signaling Pathway. Cells 2023; 12:1526. [PMID: 37296647 PMCID: PMC10252276 DOI: 10.3390/cells12111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Doxorubicin (DOX) is widely used to treat a variety of malignancies in both adults and children, including those of the bladder, breast, stomach, and ovaries. Despite this, it has been reported to cause hepatotoxicity. The recent discovery of bone marrow-derived mesenchymal stem cells' (BMSCs) therapeutic effects in the context of liver diseases suggests that their administration plays a part in the mitigation and rehabilitation of drug-induced toxicities. OBJECTIVES This study investigated whether bone BMSCs could reduce DOX-induced liver damage by blocking the Wnt/β-catenin pathway that causes fibrotic liver. MATERIALS AND METHODS BMSCs were isolated and treated with hyaluronic acid (HA) for 14 days before injection. Thirty-five mature male SD rats were categorized into four groups; group one (control) rats were supplemented with saline 0.9% for 28 days, group two (DOX) rats were injected with DOX (20 mg/kg), group three (DOX + BMSCs) rats were injected with 2 × 106 BMSCs after 4 days of DOX injection, group four (DOX + BMSCs + HA) rats were injected with 0.1 mL BMSCs pretreated with HA after 4 days of DOX. After 28 days the rats were sacrificed, and blood and liver tissue samples were subjected to biochemical and molecular analysis. Morphological and immunohistochemical observations were also carried out. RESULTS In terms of liver function and antioxidant findings, cells treated with HA showed considerable improvement compared to the DOX group (p < 0.05). Moreover, the expression of inflammatory markers (TGFβ1, iNos), apoptotic markers (Bax, Bcl2), cell tracking markers (SDF1α), fibrotic markers (β-catenin, Wnt7b, FN1, VEGF, and Col-1), and ROS markers (Nrf2, HO-1) was improved in BMSCs conditioned with HA in contrast to BMSCs alone (p < 0.05). CONCLUSION Our findings proved that BMSCs treated with HA exert their paracrine therapeutic effects via their secretome, suggesting that cell-based regenerative therapies conditioned with HA may be a viable alternative to reduce hepatotoxicity.
Collapse
Affiliation(s)
- Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Eman T. Hamam
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Sally Abdallah Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Seham Ahmed Mahmoud
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Khalid Mohamed Elazab
- Department of Biology, Faculty of Science, Jazan University, Jazan 82511, Saudi Arabia
| | - Ahmed Mohamed El Nakib
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mamdouh Eldesoqui
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Omar A. Ammar
- Basic Science Department, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourahbint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed A. Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amira Sarhan
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Ali
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Alhawas B, Abd El-Hamid MI, Hassan Z, Ibrahim GA, Neamat-Allah ANF, Rizk El-Ghareeb W, Alahmad BAHY, Meligy AMA, Abdel-Raheem SM, Abdel-Moez Ahmed Ismail H, Ibrahim D. Curcumin loaded liposome formulation: Enhanced efficacy on performance, flesh quality, immune response with defense against Streptococcus agalactiae in Nile tilapia (Orechromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108776. [PMID: 37182798 DOI: 10.1016/j.fsi.2023.108776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Application of novel trend comprising antioxidant phytogenics is aiming to minimize the stress related factors and associated diseases in intensive fish culturing. Today, the concept of exploiting and protecting natural antioxidants represents a paradigm shift for the aqua feed industry. Therefore, our principal goal targeting liposome as a novel nanocarrier for curcumin is directed to attain superior performance, fillet antioxidant stability and bacterial resistance in Nile tilapia. A total of 500 Nile tilapia fingerlings (average body weight, 10.27 ± 0.10 g) assigned into five experimental groups in 25 glass aquaria of 120 L capacity at the density 20 fish/aquaria. The experimental groups were supplemented with varying doses of liposomal curcumin-NPs, LipoCur-NPs (0, 5, 15, 25 and 35 mg/kg diet) were reared for 12 weeks and later Streptococcus agalactiae (S. agalactiae) challenged model was performed. Inclusion of LipoCur-NPs (25 and 35 mg/kg diet) had the most prominent impact on Nile tilapia growth rate and feed conversion ratio. The immune boosting outcomes post supplementing 35 mg/kg diet of LipoCur-NPs were evidenced by higher myeloperoxidase, lysozyme and total immunoglobulin levels. Even after 4 weeks frozen storage, LipoCur-NPs at the dose of 35 mg/kg diet prominently increased (P < 0.05) the fillet scavenging capability for free radicals (1,1-diphenyl-2-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) with an inverse reduction in lipid peroxidation biomarker (malondialdehyde). Notably, upregulation of GSH-Px, CAT, and SOD genes in fillet of 35 mg/kg LipoCur-NPs fed fish coordinated with higher T-AOC and lower oxidative markers (ROS and H2O2). Post S. agalactiae challenge, higher supplementation levels of LipoCur-NPs (35 mg/kg diet) greatly attenuated the expression of its vital virulence genes (cfb, fbsA and cpsA) with higher expression of Igm, CXC-chemokine and MHC genes. Concordantly, downregulation of inflammatory markers (IL-1β, TNF-α and IL-8) and upregulation of anti-inflammatory ones (IL-10 and TGF-β) were remarkably documented. Based on these findings, the innovative curcumin loaded liposome was considered a novel multitargeting alternative not only playing an imperative role in Nile tilapia growth promotion and fillet stability upon storage, but also protecting efficiently against S. agalactiae.
Collapse
Affiliation(s)
- Bassam Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Ghada A Ibrahim
- Department of Bacteriology, Animal Health Research Institute (AHRI), Ismailia Branch, Agriculture Research Center (ARC), Ismailia, 41522, Egypt.
| | - Ahmed N F Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Badr Abdul-Hakim Y Alahmad
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Ahmed M A Meligy
- Department of Clinical Science, Central Lab, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Physiology, Agricultural Research Center (ARC), Giza, Egypt.
| | - Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt.
| | - Hesham Abdel-Moez Ahmed Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Hygiene Dept., Fac. of Vet. Med., Assiut Univ., Egypt.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
9
|
Qiao W, Zang Z, Li D, Shao S, Li Q, Liu Z. Liensinine ameliorates ischemia-reperfusion-induced brain injury by inhibiting autophagy via PI3K/AKT signaling. Funct Integr Genomics 2023; 23:140. [PMID: 37118322 DOI: 10.1007/s10142-023-01063-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
The current study aimed to explore the role of autophagy in cerebral ischemia-reperfusion injuries (CIRI) and elucidate the efficacy of liensinine treatment. An in vitro ischemia-reperfusion (I/R) neuronal cell model was established and pretreated with liensinine or rapamycin (RAPA). Cell proliferation and survival were detected using a cell counting kit-8 (CCK-8) assay, while cell damage and apoptosis were detected using the lactate dehydrogenase (LDH) leakage rate and flow cytometry. Autophagy activity was detected using monodansylcadaverine (MDC) staining. Thereafter, I/R models were established in vivo in rats and the presence of neurological deficits was examined. Hematoxylin-eosin (HE) and triphenyl tetrazolium chloride (TTC) staining was used to detect pathological damage in brain tissue and the volume ratio of the cerebral infarction. The levels of PI3K/AKT pathway-related proteins and autophagy-related proteins (mTOR, LC3, P62, and TSC2) were detected using Western blot. The findings showed that liensinine treatment increased cell viability, decreased cell injury and apoptosis, and inhibited autophagy. The addition of RAPA to promote autophagy inhibited cell viability and enhanced cell injury and apoptosis. The I/R rats in the model group exhibited deficient neurological function, while those in the liensinine treatment group showed restoration of normal neural function and reduction of the necrotic area and infarct volume ratio in the brain tissue. Furthermore, liensinine treatment also inhibited the PI3K/Akt pathway activity and autophagy. However, addition of RAPA reversed the effects of liensinine treatment and aggravated brain tissue injury. Therefore, liensinine can play a neuroprotective role in CIRI by inhibiting autophagy through regulation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wanchen Qiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoxia Zang
- Department of Neurology, Heilongjiang Province Hospital, Harbin, China
| | - Dawei Li
- Department of Neurology, Shenzhen Sami Medical Center, Shenzhen, China
| | - Shuai Shao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingla Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiqiang Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Shibl NG, Fikry EM, Mansour HA, Alsemeh AE, Abdel-Ghany RH, El-Sayed SS. Ameliorative effect of bone marrow-derived mesenchymal stem cells on burn-induced hepatic and metabolic derangements in rats. Life Sci 2022; 307:120891. [PMID: 36007609 DOI: 10.1016/j.lfs.2022.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
AIMS The current study aims to investigate the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSCs) as a solo therapy in ameliorating both skin lesions and liver injury induced by cutaneous severe burn injury (SBI) in rats. MAIN METHODS In anesthetized male adult Wistar albino rats, 30 % total burn surface area and established hepatic injury was achieved via direct contact of each experimental animal's dorsum with heated metal rod (100 °C) for 10 s. On the next day following burn, human MSCs or mouse MSCs was administered locally around the burn site and intraperitonially (0.5 × 106 cells/rat for each route) and outcomes were investigated at 4 and 14 days following burn induction. KEY FINDINGS Both types of MSCs significantly improved skin and liver histology, decreased liver enzymes, and ameliorated oxidative stress in hepatocytes of SBI-rats. Further, SBI-induced rises in hepatic apoptotic marker (caspase-3, Bax) and serum inflammatory markers (TNF-α, IL-1β, and IL-6) were reduced following either human or mouse MSC administration. In addition, MSCs augmented insulin receptor substrate-1, phosphorylated protein kinase-B (phospho-Akt), while alleviating serum glucose levels in SBI-rats. These previous effects persisted even at the 14-day time point. SIGNIFICANCE Following single administration, bone marrow-derived MSCs is capable of counteracting SBI-induced skin lesions as well as related hepatic complications, specifically via mitigating postburn hyperglycemia and hyperinflammation.
Collapse
Affiliation(s)
- Nourhan G Shibl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Ebtehal Mohammad Fikry
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hanaa A Mansour
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Amira Ebrahim Alsemeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha H Abdel-Ghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
12
|
Xu L, Zhang Y, Ji N, Du Y, Jia T, Wei S, Wang W, Zhang S, Chen W. Tanshinone IIA regulates the TGF‑β1/Smad signaling pathway to ameliorate non‑alcoholic steatohepatitis‑related fibrosis. Exp Ther Med 2022; 24:486. [PMID: 35761808 PMCID: PMC9214595 DOI: 10.3892/etm.2022.11413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022] Open
Abstract
Tanshinone IIA (TIIA) is a major component extracted from the traditional herbal medicine Salvia miltiorrhiza and has been indicated to play a role in the treatment of organ fibrosis. However, the evidence supporting its antifibrotic effect is insufficient and the underlying mechanism is unclear. To investigate the therapeutic effect of TIIA on non-alcoholic steatohepatitis-related fibrosis (NASH-F), the present study used a methionine choline deficiency diet to induce NASH-F in rats, and explored the effect of TIIA on the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. Wistar rats were randomly divided into control, NASH-F and TIIA groups. After 8 weeks of treatment, the levels of serum markers associated with liver function and fibrosis were measured, liver fat vacuoles and inflammation were assessed by haematoxylin and eosin staining, and liver fibrosis was assessed by Masson's trichrome staining. TGF-β1, Smad2, Smad3, Smad7 and α-smooth muscle actin (α-SMA) mRNA expression, and TGF-β1, Smad2/3, phosphorylated (p)-Smad2/3, Smad7 and α-SMA protein levels were determined. The results revealed that TIIA could remarkably ameliorate liver fat vacuoles and inflammation in NASH-F rats, and could decrease the levels of serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, total bile acid, hyaluronic acid, type Ⅳ collagen, laminin and type III collagen, while increasing the levels of total cholesterol and triglycerides; however, this was not statistically significance. TIIA markedly suppressed the increased TGF-β1, Smad2, Smad3 and α-SMA mRNA expression levels observed in the liver of NASH-F rats, while it increased the mRNA expression level of Smad7. Similarly, TIIA suppressed the increased TGF-β1, p-Smad2/3 and α-SMA protein levels observed in the liver of NASH-F rats, while it increased the protein expression level of Smad7 in vitro and in vivo. TIIA had no significant cytotoxic effect at 10, 20, 40 and 80 µmol/l on human LX-2 cell. In conclusion, the findings of the present study indicated that TIIA alleviated NASH-F by regulating the TGF-β1/Smad signaling pathway. TIIA may be a useful tool in the prevention and treatment of NASH-F.
Collapse
Affiliation(s)
- Lianjie Xu
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yurong Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Nengbo Ji
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yan Du
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Tao Jia
- Department of Orthopedics, First Clinical Medical College of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650021, P.R. China
| | - Shanshan Wei
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wei Wang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Shan Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wenhui Chen
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
13
|
Alasmari WA, Abdelfattah-Hassan A, El-Ghazali HM, Abdo SA, Ibrahim D, ElSawy NA, El-Shetry ES, Saleh AA, Abourehab MAS, Mahfouz H. Exosomes Derived from BM-MSCs Mitigate the Development of Chronic Kidney Damage Post-Menopause via Interfering with Fibrosis and Apoptosis. Biomolecules 2022; 12:biom12050663. [PMID: 35625591 PMCID: PMC9138582 DOI: 10.3390/biom12050663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
The rate of chronic kidney disease (CKD) is increasing globally, and it is caused by continuous damage to kidney tissue. With time the renal damage becomes irreversible, leading to CKD development. In females, post-menopause lack of estrogen supply has been described as a risk factor for CKD development, and studies targeting post-menopause CKD are scarce. In the present study, we used exosomes isolated from bone marrow mesenchymal stem/stromal cells (BM-MSCs) to test their therapeutic potential against the development of CKD. At first, the menopause model was achieved by surgical bilateral ovariectomy in female albino rats. After that, 100 µg of exosomes was given to ovariectomized rats, and the study continued for 2 months. Changes in urine volume, urine protein content, kidney function biochemical parameters (creatinine and BUN), kidney antioxidant parameters (SOD, GPx and CAT), histological changes, immunohistochemical levels of caspase 3, and the gene expression of NGAL (related to kidney damage), TGFβ1 and αSMA (related to fibrosis and EMT), and caspase 3 (related to apoptosis) were studied. After the ovariectomy, the occurrence of CKD was confirmed in the rats by the drastic reduction of serum estrogen and progesterone levels, reduced urine output, increased urinary protein excretion, elevated serum creatinine and BUN, reduced GPx SOD, and CAT in kidney tissue, degenerative and fibrotic lesions in the histopathological examination, higher immunohistochemical expression of caspase 3 and increased expression of all studied genes. After exosomes administration, the entire chronic inflammatory picture in the kidney was corrected, and a near-normal kidney structure and function were attained. This study shows for the first time that BM-MSCs exosomes are potent for reducing apoptosis and fibrosis levels and, thus, can reduce the chronic damage of the kidneys in females that are in their menopause period. Therefore, MSCs-derived exosomes should be considered a valuable therapy for preserving postmenopausal kidney structure and function and, subsequently, could improve the quality of females’ life during menopause.
Collapse
Affiliation(s)
- Wardah A. Alasmari
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Makkah 24230, Saudi Arabia
- Correspondence: (W.A.A.); or (A.A.-H.)
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
- Correspondence: (W.A.A.); or (A.A.-H.)
| | - Hanaa M. El-Ghazali
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Samar A. Abdo
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Naser A. ElSawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt; (N.A.E.); (E.S.E.-S.)
| | - Eman S. El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt; (N.A.E.); (E.S.E.-S.)
| | - Ayman A. Saleh
- Department of Animal Wealth Development, Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Hala Mahfouz
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
14
|
Probiotics-loaded nanoparticles attenuated colon inflammation, oxidative stress, and apoptosis in colitis. Sci Rep 2022; 12:5116. [PMID: 35332200 PMCID: PMC8948303 DOI: 10.1038/s41598-022-08915-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/11/2022] [Indexed: 12/19/2022] Open
Abstract
Promising therapy is needed for treating inflammatory bowel diseases (IBD) to overcome current treatment that inefficient and associated with unnecessary health risks. Recently, the concept of incorporating natural products into nanocarriers has been intended as a promising therapy for treating IBD via modulating their stability and bioavailability. Thus, we aimed to explore the potential alleviating effects of dietary nano-supplement combined with bacillus strains (Bacillus amyloliquefaciens; BANPs) in colitis model. Rats were orally gavaged by 5% DSS and the efficacy and mechanistic actions of BANPs were evaluated by assessing the severity of clinical signs and inflammatory and apoptosis response, histopathological and immunohistochemistry examination in colonic tissues. The severity of clinical signs was successfully alleviated and fecal Lcn-2 levels, an important colitic marker, were decreased in BANPs then free BA treated groups. In contrast, inflammatory markers overexpression IL-6, IL-1β, TNFα, COX-2, and iNOS in the colitic group were reduced more prominently in BANPs treated group, unlike free BA. The amelioration of BANPs to colon injury was also correlated with oxidative stress suppression along with restoring total antioxidant capacity. Interestingly, BANPs treatment modulated apoptotic markers as proved by downregulation of cytochrome c, and caspase-3 and upregulation of Bcl-2 and Bax than free BA. The severity of the histopathological alterations in the colon was greatly reduced in BANPs than free BA groups. Remarkably, over-expression of ki67 and IL-6 in colonic tissues were suppressed in BANPs group. These findings together highlighted the beneficial efficacy of BANPs in IBD treatment which are evidenced by colonic inflammation alleviation. Taken together, these results recommend that BANPs is a promising agent that encourages its possible therapeutic role in colitis treatment.
Collapse
|
15
|
Is Autophagy Always a Barrier to Cisplatin Therapy? Biomolecules 2022; 12:biom12030463. [PMID: 35327655 PMCID: PMC8946631 DOI: 10.3390/biom12030463] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 01/10/2023] Open
Abstract
Cisplatin has long been a first-line chemotherapeutic agent in the treatment of cancer, largely for solid tumors. During the course of the past two decades, autophagy has been identified in response to cancer treatments and almost uniformly detected in studies involving cisplatin. There has been increasing recognition of autophagy as a critical factor affecting tumor cell death and tumor chemoresistance. In this review and commentary, we introduce four mechanisms of resistance to cisplatin followed by a discussion of the factors that affect the role of autophagy in cisplatin-sensitive and resistant cells and explore the two-sided outcomes that occur when autophagy inhibitors are combined with cisplatin. Our goal is to analyze the potential for the combinatorial use of cisplatin and autophagy inhibitors in the clinic.
Collapse
|
16
|
Ao H, Wang Z, Lu L, Ma H, Li H, Fu J, Li M, Han M, Guo Y, Wang X. Enhanced tumor accumulation and therapeutic efficacy of liposomal drugs through over-threshold dosing. J Nanobiotechnology 2022; 20:137. [PMID: 35292036 PMCID: PMC8922779 DOI: 10.1186/s12951-022-01349-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Background Most intravenously administered drug-loaded nanoparticles are taken up by liver Kupffer cells, and only a small portion can accumulate at the tumor, resulting in an unsatisfactory therapeutic efficacy and side effects for chemotherapeutic agents. Tumor-targeted drug delivery proves to be the best way to solve this problem; however, the complex synthesis, or surface modification process, together with the astonishing high cost make its clinical translation nearly impossible. Methods Referring to Ouyang’s work and over-threshold dosing theory in general, blank PEGylated liposomes (PEG-Lipo) were prepared and used as tumor delivery enhancers to determine whether they could significantly enhance the tumor accumulation and in vivo antitumor efficacy of co-injected liposomal ACGs (PEG-ACGs-Lipo), a naturally resourced chemotherapeutic. Here, the phospholipid dose was used as an indicator of the number of liposomes particles with similar particle sizes, and the liposomes was labelled with DiR, a near-red fluorescent probe, to trace their in vivo biodistribution. Two mouse models, 4T1-bearing and U87-bearing, were employed for in vivo examination. Results PEG-Lipo and PEG-ACGs-Lipo had similar diameters. At a low-threshold dose (12 mg/kg equivalent phospholipids), PEG-Lipo was mainly distributed in the liver rather than in the tumor, with the relative tumor targeting index (RTTI) being ~ 0.38 at 72 h after administration. When over-threshold was administered (50 mg/kg or 80 mg/kg of equivalent phospholipids), a much higher and quicker drug accumulation in tumors and a much lower drug accumulation in the liver were observed, with the RTTI increasing to ~ 0.9. The in vivo antitumor study in 4T1 tumor-bearing mice showed that, compared to PEG-ACGs-Lipo alone (2.25 mg/kg phospholipids), the co-injection of a large dose of blank PEG-Lipo (50 mg/kg of phospholipids) significantly reduced the tumor volume of the mice by 22.6% (P < 0.05) and enhanced the RTTI from 0.41 to 1.34. The intravenous injection of a low drug loading content (LDLC) of liposomal ACGs (the same dose of ACGs at 50 mg/kg of equivalent phospholipids) achieved a similar tumor inhibition rate (TIR) to that of co-injection. In the U87 MG tumor-bearing mouse model, co-injection of the enhancer also significantly promoted the TIR (83.32% vs. 66.80%, P < 0.05) and survival time of PEG-ACGs-Lipo. Conclusion An over-threshold dosing strategy proved to be a simple and feasible way to enhance the tumor delivery and antitumor efficacy of nanomedicines and was benefited to benefit their clinical result, especially for liposomal drugs. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01349-1.
Collapse
Affiliation(s)
- Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Zhuo Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, People's Republic of China
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Hongwei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, 150040, People's Republic of China
| | - Haowen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|