1
|
Zhou Y, Yu H, Li Q, Kong L, Liu S, Xu C. Characterization of piRNAs in Diploid and Triploid Pacific Oyster Gonads: Exploring Their Potential Roles in Triploid Sterility. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1017-1029. [PMID: 39073646 DOI: 10.1007/s10126-024-10351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements, germ cell development, and gametogenesis. Triploid Pacific oysters (Crassostrea gigas) are vital in the oyster aquaculture industry due to reduced fertility and rapid growth. This study integrates piRNA and mRNA expression analyses to elucidate their potential contributions to the sterility of triploid C. gigas. Bioinformatics analysis reveals a distinct U-bias at the 5' terminal of oyster piRNAs. The abundance of piRNA clusters is reduced in triploid gonads compared to diploid gonads, particularly in sterile gonads, with a significant decrease in piRNA numbers. A specific piRNA cluster is annotated with the PPP4R1 gene, which is downregulated in infertile female triploids and exhibits a negative correlation with three piRNAs within the cluster. Differential expression analysis identified 46 and 88 piRNAs in female and male comparison groups, respectively. In female sterile triploids, the expression of three target genes of differentially expressed piRNAs associated with cell division showed downregulation, suggesting the potential roles of piRNAs in the regulation of cell division-related genes, contributing to the gonad arrest observed in female triploid oysters. In male triploid oysters, piRNAs potentially interact with the target genes associated with spermatogenesis, including TSSK4, SPAG17, and CCDC81. This study provides a concise overview of piRNAs expression in oyster gonads, offering insights into the regulatory role of piRNAs in triploid sterility.
Collapse
Affiliation(s)
- Yaru Zhou
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
| |
Collapse
|
2
|
Ye J, Zeng J, Zheng H, Zhang C, Zhang H, Zheng H. Genome-wide identification of STATs and analysis of their role in sex determination in Pacific oysters (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110933. [PMID: 38110171 DOI: 10.1016/j.cbpb.2023.110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
STAT (signal transducer and activator of the transcription) proteins, are a group of highly conserved transcription factors and fundamental components of the JAK-STAT signaling pathway. They play crucial roles in a variety of biological processes, such as immunity, proliferation, differentiation, and growth. However, little information is known regarding their role in gonad development and sex determination in mollusks. In this study, we identified 3 STAT genes in Pacific Oyster Crassostrea gigas. Phylogenetic analysis showed that STATs from mollusks were highly conserved, and most of them had four identical motif regions, except for the STAT1 and STAT3 predicted sequences from Crassostrea hongkongensis. Tissue expression analysis indicated CgSTAT1 had a high expression level in most tissues, while CgSTAT3 had a low expression level in most tissues. Expression analysis of early developmental stages showed CgSTAT1 had a higher expression level from egg to D shaped larva and a lower expression level in subsequent stages. In contrast CgSTAT1, CgSTAT2 had a reverse expression pattern. Expression analysis of different developmental stages of diploid gonads indicated that CgSTAT1 had a higher expression level at the S1 and S3 stages relative to the S2 stage in females, while in males the S3 stage had a higher expression than than the S2 stage. The expression level of CgSTAT1 between diploids and triploids in females differed significantly, but there were no significant differences in males. Expression of CgSTAT2 differed significantly between diploid and triploid males. These data suggest an important role for STATs in sex differentiation in diploid and triploid oysters. Our study is the first to explore the role of STATs in sex differentiation and gonadal development in oysters, and will help us better understand the molecular mechanisms of sex differentiation in shellfish.
Collapse
Affiliation(s)
- Jianming Ye
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Junxi Zeng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Haiqian Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Chuanxu Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| |
Collapse
|
3
|
Wu B, Chen X, Hu J, Wang ZY, Wang Y, Xu DY, Guo HB, Shao CW, Zhou LQ, Sun XJ, Yu T, Wang XM, Zheng YX, Fan GY, Liu ZH. Combined ATAC-seq, RNA-seq, and GWAS analysis reveals glycogen metabolism regulatory network in Jinjiang oyster ( Crassostrea ariakensis). Zool Res 2024; 45:201-214. [PMID: 38199974 PMCID: PMC10839670 DOI: 10.24272/j.issn.2095-8137.2023.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/08/2023] [Indexed: 01/12/2024] Open
Abstract
Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters. The Jinjiang oyster ( Crassostrea ariakensis) is an economically and ecologically important species in China. In the present study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents. Analysis identified 9 483 differentially expressed genes (DEGs) and 7 215 genes with significantly differential chromatin accessibility (DCAGs) were obtained, with an overlap of 2 600 genes between them. Notably, a significant proportion of these genes were enriched in pathways related to glycogen metabolism, including "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, genome-wide association study (GWAS) identified 526 single nucleotide polymorphism (SNP) loci associated with glycogen content. These loci corresponded to 241 genes, 63 of which were categorized as both DEGs and DCAGs. This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C. ariakensis.
Collapse
Affiliation(s)
- Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Xi Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266426, China
| | - Zhen-Yuan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Da-You Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266426, China
| | - Hao-Bing Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266426, China
| | - Chang-Wei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Li-Qing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Xiu-Jun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, Shandong 265800, China
| | - Xiao-Mei Wang
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, Shandong 265800, China
| | - Yan-Xin Zheng
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Yantai, Shandong 265800, China
| | - Guang-Yi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266426, China
- State Key Laboratory of Agricultural Genomics, BGI- Shenzhen, Shenzhen, Guangdong 518083, China. E-mail:
| | - Zhi-Hong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266071, China. E-mail:
| |
Collapse
|
4
|
Zeng Y, Zheng H, He C, Zhang C, Zhang H, Zheng H. Genome-wide identification and expression analysis of Dmrt gene family and their role in gonad development of Pacific oyster (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110904. [PMID: 37751789 DOI: 10.1016/j.cbpb.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Doublesex and Mab-3-related transcription factor (Dmrt) is a type of transcription factor with a zinc-finger DM structural domain, which plays a significant role in sex determination and differentiation in animals. Although Dmrt has been reported in many vertebrates and invertebrates, it has rarely been studied in bivalves. In this study, a total of three members of the Dmrt gene family were identified and characterized in Crassostrea gigas, and all these CgDmrt genes contained a conserved DM domain. Analysis of the phylogenetic tree and gene structure revealed that Dmrt genes clustered on one branch may have similar functions in bivalves. Expression profiling of CgDmrt mRNA in different tissues and stages of gonad development indicated that CgDmrt3 exhibited sexually dimorphic expression and played an important role in the development of the male gonad in C. gigas. Furthermore, analysis of CgDmrt mRNA expression between fertile triploids and sterile triploids showed that CgDmrt3 may be involved in sperm production. Collectively, the systematic analysis of the CgDmrt genes will provide potential insights into the function of these genes in gonadal development.
Collapse
Affiliation(s)
- Yetao Zeng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Haiqian Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Cheng He
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Chuanxu Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| |
Collapse
|
5
|
Liu M, Li Q, Tan L, Wang L, Wu F, Li L, Zhang G. Host-microbiota interactions play a crucial role in oyster adaptation to rising seawater temperature in summer. ENVIRONMENTAL RESEARCH 2023; 216:114585. [PMID: 36252835 DOI: 10.1016/j.envres.2022.114585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change, represented by rising and fluctuating temperature, induces systematic changes in marine organisms and in their bacterial symbionts. However, the role of host-microbiota interactions in the host's response to rising temperature and the underlying mechanisms are incompletely understood in marine organisms. Here, the symbiotic intestinal microbiota and transcriptional responses between diploid and triploid oysters that displayed susceptible and resistant performance under the stress of rising temperature during a summer mortality event were compared to investigate the host-microbiota interactions. The rising and fluctuating temperatures triggered an earlier onset and higher mortality in susceptible oysters (46.7%) than in resistant oysters (17.3%). Correlation analysis between microbial properties and environmental factors showed temperature was strongly correlated with indices of α-diversity and the abundance of top 10 phyla, indicating that temperature significantly shaped the intestinal microbiota of oysters. The microbiota structure of resistant oysters exhibited more rapid changes in composition and diversity compared to susceptible oysters before peak mortality, indicating that resistant oysters possessed a stronger ability to regulate their symbiotic microbiota. Meanwhile, linear discriminant analysis effect size (LefSe) analysis found that the probiotics Verrucomicrobiales and Clostridiales were highly enriched in resistant oysters, and that potential pathogens Betaproteobacteriales and Acidobacteriales were enriched in susceptible oysters. These results implied that the symbiotic microbiota played a significant role in the oysters' adaptation to rising temperature. Accompanying the decrease in unfavorable bacteria before peak mortality, genes related to phagocytosis and lysozymes were upregulated and the xenobiotics elimination pathway was exclusively expressed in resistant oysters, demonstrating the validity of these immunological functions in controlling proliferation of pathogens driven by rising temperature. Compromised immunological functions might lead to proliferation of pathogens in susceptible oysters. This study might uncover a conserved mechanism of adaptation to rising temperature in marine invertebrates from the perspective of interactions between host and symbiotic microbiota.
Collapse
Affiliation(s)
- Mingkun Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Qingyuan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Lintao Tan
- Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Luping Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| |
Collapse
|
6
|
Transcription Analysis for Core Networks of lncRNAs–mRNAs: Implication for Potential Role in Sterility of Crassostrea gigas. BIOLOGY 2022; 11:biology11030378. [PMID: 35336752 PMCID: PMC8945556 DOI: 10.3390/biology11030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary This study reveals the expression profiles of lncRNA in the gonads of the Pacific oyster Crassostrea gigas. The potential function of lncRNAs was predicted in the case of antisense and cis-regulatory mechanisms based on their physical positions and their coexpression relationships in the case of trans regulation. Sterility-related DEGs and DELs were chosen for subsequent analysis, demonstrating that trans-regulatory lncRNAs might play a vital role in the gametogenesis of C. gigas. We constructed core networks of lncRNAs–mRNAs for triploid sterile females and hermaphrodites based on pathway results, in which 28 lncRNAs and their 54 trans-regulatory genes were detected. Among 28 sterility-specific lncRNAs, MSTRG.79882.3 and MSTRG.79882.4 for triploid sterile females and MSTRG.33704.1, MSTRG.63844.1, and MSTRG.5675.1 for hermaphrodites play the most significant role. Abstract Long noncoding RNA (lncRNA), a type of non-protein-coding transcript, is emerging as a crucial regulator of gene expression. However, few roles of lncRNA in the reproductive process of the Pacific oyster (Crassostrea gigas) have been defined, especially in the regulatory mechanism of sterile triploids gametogenesis. To uncover the potential role of lncRNA, the gonads of diploids, sterile triploids, and partially sterile triploids underwent RNA sequencing. A total of 9618 reliable lncRNAs were identified. The target relationship between lncRNA and mRNA was predicted based on cis, trans, and antisense regulation with bioinformatic software. We chose differentially expressed lncRNAs and mRNAs when sterile triploids were compared to partially sterile triploids and diploids for subsequent functional enrichment analysis. Findings revealed that trans-regulatory lncRNAs might play a significant role in the gametogenesis of C. gigas. Combining pathway results, we constructed core networks of lncRNAs–mRNAs for triploid sterile females and hermaphrodites. Fifty-four genes related to cell division, germline-cell maintenance, and glycogen metabolism were found to be associated with sterility. A total of 28 candidate lncRNAs were predicted to trans-regulate these genes. We speculated that MSTRG.79882.3 and MSTRG.79882.4 for triploid sterile females and MSTRG.33704.1, MSTRG.63844.1, and MSTRG.5675.1 for hermaphrodites were highly important as they were predicted to regulate more sterility-specific genes than others. Our work collectively identified sterility-related lncRNAs and implicated the potential mechanism of lncRNA-mediated regulation in the gametogenesis of sterile triploid oysters.
Collapse
|