1
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Wang Y, Qiao SL, Wang J, Yu MZ, Wang NN, Mamuti M, An HW, Lin YX, Wang H. Engineered CpG-Loaded Nanorobots Drive Autophagy-Mediated Immunity for TLR9-Positive Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306248. [PMID: 37897408 DOI: 10.1002/adma.202306248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Smart nanorobots have emerged as novel drug delivery platforms in nanomedicine, potentially improving anti-cancer efficacy and reducing side effects. In this study, an intelligent tumor microenvironment-responsive nanorobot is developed that effectively delivers CpG payloads to Toll-like receptor 9 (TLR9)-positive tumors to induce autophagy-mediated cell death for immunotherapy. The nanorobots are fabricated by co-self-assembly of two amphiphilic triblock polymer peptides: one containing the matrix metallopeptidase 2 (MMP2)-cleaved GPLGVRGS motif to control the mechanical opening of the nanorobots and provide targeting capability for TLR-9-positive tumors and the other consisting of an arginine-rich GRRRDRGRS sequence that can condense nuclear acid payloads through electrostatic interactions. Using multiple tumor-bearing mouse models, it is investigated whether the intravenous injection of CpG-loaded nanorobots could effectively deliver CpG payloads to TLR-9-positive tumors and elicit anti-tumor immunity through TLR9 signaling and autophagy. Therefore, besides being a commonly used adjuvant for tumor vaccination, CpG-loaded nanorobots can effectively reprogram the tumor immunosuppressive microenvironment and suppress tumor growth and recurrence. This nanorobot-based CpG immunotherapy can be considered a feasible approach to induce anti-tumor immunity, showing great therapeutic potential for the future treatment of TLR9-positive cancers.
Collapse
Affiliation(s)
- Yi Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
- Institute of Bioengineering and Institute of Materials Science & Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Sheng-Lin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Jie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Muhetaerjiang Mamuti
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100149, P. R. China
| |
Collapse
|
3
|
Zhao H, Zhang Y, Fu X, Chen C, Khattak S, Wang H. The double-edged sword role of hydrogen sulfide in hepatocellular carcinoma. Front Pharmacol 2023; 14:1280308. [PMID: 37886126 PMCID: PMC10598729 DOI: 10.3389/fphar.2023.1280308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
With an increasing worldwide prevalence, hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver in the world. It is also the primary reason for cancer-related death in the world. The pathogenesis of HCC is complex, such as DNA methylation changes, immune regulatory disorders, cell cycle disorders, chromosomal instability, and so on. Although many studies have been conducted on HCC, the molecular mechanisms of HCC are not completely understood. At present, there is no effective treatment for HCC. Hydrogen sulfide (H2S) has long been regarded as a toxic gas with the smell of rotten eggs, but recent studies have shown that it is an important gasotransmitter along with carbon monoxide (CO) and nitric oxide (NO). Increasing evidence indicates that H2S has multiple biological functions, such as anti-inflammation, anti-apoptosis, anti-oxidative stress, and so on. Recently, a lot of evidence has shown that H2S has a "double-edged sword" effect in HCC, but the mechanism is not fully understood. Here, we reviewed the progress on the role and mechanism of H2S in HCC in recent years, hoping to provide a theoretical reference for future related research.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Chaoren Chen
- School of Nursing and Health, Institute of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
4
|
Moosavi MA, Djavaheri-Mergny M. Exploring the Complex Link between Autophagy, Regulated Cell Death, and Cell Fate Pathways in Cancer Pathogenesis and Therapy. Cells 2023; 12:cells12030498. [PMID: 36766840 PMCID: PMC9914119 DOI: 10.3390/cells12030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a catabolic lysosomal-dependent pathway involved in the degradation of cellular materials, supplying precursor compounds and energy for macromolecule synthesis and metabolic needs [...].
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran P.O. Box 14965/161, Iran
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
5
|
Jin Z, Sun X, Wang Y, Zhou C, Yang H, Zhou S. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Front Immunol 2022; 13:1018903. [PMID: 36300110 PMCID: PMC9589261 DOI: 10.3389/fimmu.2022.1018903] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have revolutionized the treatment of patients with advanced and metastatic tumors resistant to traditional therapies. However, the immunosuppressed tumor microenvironment (TME) results in a weak response to immunotherapy. Therefore, to realize the full potential of immunotherapy and obstacle barriers, it is essential to explore how to convert cold TME to hot TME. Autophagy is a crucial cellular process that preserves cellular stability in the cellular components of the TME, contributing to the characterization of the immunosuppressive TME. Targeted autophagy ignites immunosuppressive TME by influencing antigen release, antigen presentation, antigen recognition, and immune cell trafficking, thereby enhancing the effectiveness of cancer immunotherapy and overcoming resistance to immunotherapy. In this review, we summarize the characteristics and components of TME, explore the mechanisms and functions of autophagy in the characterization and regulation of TME, and discuss autophagy-based therapies as adjuvant enhancers of immunotherapy to improve the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Zhicheng Jin
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xuefeng Sun
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yaoyao Wang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chao Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
- Department of Radiation Oncology, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, China
- *Correspondence: Suna Zhou, ; HaihuaYang,
| |
Collapse
|
6
|
Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5452. [PMID: 34771615 PMCID: PMC8582515 DOI: 10.3390/cancers13215452] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | | |
Collapse
|