1
|
Acosta-Alvear D, Harnoss JM, Walter P, Ashkenazi A. Homeostasis control in health and disease by the unfolded protein response. Nat Rev Mol Cell Biol 2025; 26:193-212. [PMID: 39501044 DOI: 10.1038/s41580-024-00794-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 02/27/2025]
Abstract
Cells rely on the endoplasmic reticulum (ER) to fold and assemble newly synthesized transmembrane and secretory proteins - essential for cellular structure-function and for both intracellular and intercellular communication. To ensure the operative fidelity of the ER, eukaryotic cells leverage the unfolded protein response (UPR) - a stress-sensing and signalling network that maintains homeostasis by rebalancing the biosynthetic capacity of the ER according to need. The metazoan UPR can also redirect signalling from cytoprotective adaptation to programmed cell death if homeostasis restoration fails. As such, the UPR benefits multicellular organisms by preserving optimally functioning cells while removing damaged ones. Nevertheless, dysregulation of the UPR can be harmful. In this Review, we discuss the UPR and its regulatory processes as a paradigm in health and disease. We highlight important recent advances in molecular and mechanistic understanding of the UPR that enable greater precision in designing and developing innovative strategies to harness its potential for therapeutic gain. We underscore the rheostatic character of the UPR, its contextual nature and critical open questions for its further elucidation.
Collapse
Affiliation(s)
| | - Jonathan M Harnoss
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Peter Walter
- Altos Labs, Inc., Bay Area Institute of Science, Redwood City, CA, USA.
| | - Avi Ashkenazi
- Research Oncology, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
2
|
Sun G, Zhou YH. Identifying novel therapeutic targets in cystic fibrosis through advanced single-cell transcriptomics analysis. Comput Biol Med 2025; 187:109748. [PMID: 39921941 DOI: 10.1016/j.compbiomed.2025.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Lung disease remains a leading cause of morbidity and mortality in individuals with cystic fibrosis (CF). Despite significant advances, the complex molecular mechanisms underlying CF-related airway pathology are not fully understood. Building upon previous single-cell transcriptomics studies in CF patients and healthy controls, this study employs enhanced analytical methodologies to deepen our understanding of CF-associated gene expression. METHODS We employed advanced single-cell transcriptomics techniques, integrating data from multiple sources and implementing rigorous normalization and mapping strategies using a comprehensive lung reference panel. These sophisticated methods were designed to enhance the accuracy and depth of our analysis, with a focus on elucidating differential gene expression and characterizing co-expression network dynamics associated with cystic fibrosis (CF). RESULTS Our analysis uncovered novel genes and regulatory networks that had not been previously associated with CF airway disease. These findings highlight new potential therapeutic targets that could be exploited to develop more effective interventions for managing CF-related lung conditions. CONCLUSION This study provides critical insights into the molecular landscape of CF airway disease, offering new avenues for targeted therapeutic strategies. By identifying key genes and networks involved in CF pathogenesis, our research contributes to the broader efforts to improve the prognosis and quality of life for patients with CF. These discoveries pave the way for future studies aimed at translating these findings into clinical practice.
Collapse
Affiliation(s)
- George Sun
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, 27695, NC, USA
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, 1 Lampe Drive, Raleigh, 27695, NC, USA; Departments of Biological Sciences and Statistics, North Carolina State University, 1 Lampe Drive, Raleigh, 27695, NC, USA.
| |
Collapse
|
3
|
Zhou X, Zou L, Deng H, Zhou Y, Wu Y, Ouyang X, Liu L, Wang L, Li T. Protective Effects and Mechanisms of Inhibiting Endoplasmic Reticulum Stress on Cold Seawater Immersion Combined with Hemorrhagic Shock. J Inflamm Res 2024; 17:4923-4940. [PMID: 39070132 PMCID: PMC11283250 DOI: 10.2147/jir.s469622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Cold seawater immersion aggravates hemorrhagic shock-induced homeostasis imbalance and organ dysfunction, leading to increased mortality. Previous studies have shown that treatments targeting oxidative stress and mitochondrial dysfunction have limited efficacy for cold seawater immersion combined with hemorrhagic shock (SIHS). Thus, the mechanisms responsible for SIHS need further investigation. Methods and Results Data from the hemorrhagic shock transcriptome and cold seawater immersion targets used for bioinformatics analysis revealed the involvement of endoplasmic reticulum stress (ERS) in SIHS occurrence and progression. Based on these findings, the effects and possible mechanism of inhibiting ERS in SIHS rats were investigated. SIHS causes a lethal triad and impairment of vital organ function, leading to death. Compared to lactated Ringer's solution, the ERS inhibitor 4-phenylbutyric acid (PBA)significantly ameliorated acidosis and coagulopathy and protected vital organ function while prolonging survival and the golden treatment time. Through target screening and validation, 7 targets were identified for the ERS inhibitor PBA for the treatment of SIHS, among which S1PR1, MMP8 and CFTR may play more important roles. Conclusion ERS plays a crucial role in the progression of SIHS. Inhibition of ERS caused by SIHS alleviates the lethal triad, protects organ function, and prolongs survival and the golden treatment time. The ERS inhibitor PBA may be an effective therapeutic measure for treating SIHS.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Liyong Zou
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Haoyue Deng
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Yuanqun Zhou
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Yue Wu
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Xingnan Ouyang
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Liangming Liu
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Li Wang
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| | - Tao Li
- Department of Shock and Transfusion, Army Medical Center of Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Santinelli R, Benz N, Guellec J, Quinquis F, Kocas E, Thomas J, Montier T, Ka C, Luczka-Majérus E, Sage E, Férec C, Coraux C, Trouvé P. The Inhibition of the Membrane-Bound Transcription Factor Site-1 Protease (MBTP1) Alleviates the p.Phe508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Defects in Cystic Fibrosis Cells. Cells 2024; 13:185. [PMID: 38247876 PMCID: PMC10814821 DOI: 10.3390/cells13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cystic Fibrosis (CF) is present due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, the most frequent variant being p.phe508del. The CFTR protein is a chloride (Cl-) channel which is defective and almost absent of cell membranes when the p.Phe508del mutation is present. The p.Phe508del-CFTR protein is retained in the endoplasmic reticulum (ER) and together with inflammation and infection triggers the Unfolded Protein Response (UPR). During the UPR, the Activating Transcription Factor 6 (ATF6) is activated with cleavage and then decreases the expression of p.Phe508del-CFTR. We have previously shown that the inhibition of the activation of ATF6 alleviates the p.Phe508del-CFTR defects in cells overexpressing the mutated protein. In the present paper, our aim was to inhibit the cleavage of ATF6, and thus its activation in a human bronchial cell line with endogenous p.Phe508del-CFTR expression and in bronchial cells from patients, to be more relevant to CF. This was achieved by inhibiting the protease MBTP1 which is responsible for the cleavage of ATF6. We show here that this inhibition leads to increased mRNA and p.Phe508del-CFTR expression and, consequently, to increased Cl-efflux. We also explain the mechanisms linked to these increases with the modulation of genes when MBTP1 is inhibited. Indeed, RT-qPCR assays show that genes such as HSPA1B, CEBPB, VIMP, PFND2, MAPK8, XBP1, INSIG1, and CALR are modulated. In conclusion, we show that the inhibition of MBTP1 has a beneficial effect in relevant models to CF and that this is due to the modulation of genes involved in the disease.
Collapse
Affiliation(s)
- Raphaël Santinelli
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Nathalie Benz
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Julie Guellec
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Fabien Quinquis
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Ervin Kocas
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Johan Thomas
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Chandran Ka
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Emilie Luczka-Majérus
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, F-51100 Reims, France; (E.L.-M.); (C.C.)
| | - Edouard Sage
- Université Paris-Saclay, INRAE, UVSQ, VIM, F-78350 Jouy-en-Josas, France;
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| | - Christelle Coraux
- Inserm UMR-S 1250, University of Reims Champagne-Ardenne (URCA), SFR Cap-Santé, F-51100 Reims, France; (E.L.-M.); (C.C.)
| | - Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France; (R.S.); (N.B.); (J.G.); (F.Q.); (E.K.); (J.T.); (T.M.); (C.K.); (C.F.)
| |
Collapse
|
6
|
Riillo C, Bonapace G, Moricca MT, Sestito S, Salatino A, Concolino D. c.376A>G, (p.Ser126Gly) Alpha-Galactosidase A mutation induces ER stress, unfolded protein response and reduced enzyme trafficking to lysosome: Possible relevance in the pathogenesis of late-onset forms of Fabry Disease. Mol Genet Metab 2023; 140:107700. [PMID: 37774431 DOI: 10.1016/j.ymgme.2023.107700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Fabry Disease (FD) (OMIM 301500) is a metabolic X-linked inherited lysosomal storage disorder that results from the deficient activity of Alpha-Galactosidase A (Alpha-Gal), a lysosomal hydrolase that cleaves neutral glycosphingolipids with terminal N-linked galactosyl moieties, mainly globotriaosylceramides (Gb3). The enzyme, encoded by a 12-kb gene mapping on the long arm (Xq22.1 region) of the X chromosome, is constituted by a glycosylated subunit of approximately 55 kD, synthesized as an inactive precursor that undergoes maturation in endoplasmic reticulum (ER) and Golgi apparatus before being delivered to the lysosome to form a functional dimer. The gene is comprised of seven exons and, so far, >1000 different mutations have been described as associated to FD (www.dbfgp.org/dbFgp/fabry/FabryGP.htm). Clinical phenotypes are divided in two main classes, classic or non-classic, based on clinical and biochemical findings. Non-classic FD, usually recognized as late-onset forms with oligosymptomatic phenotype, presents with symptoms restricted solely to cardiocytes, kidneys or brain associated to missense misfolding mutations. In the group of the non-classic FD, special attention should be given to patients carrying the c.376A > G (p.Ser126Gly) mutation. The lack of clear experimental evidences on its pathogenetic role, despite the clinical pictures of the patients with severe ischaemic lesions, renal involvement and acroparesthesias, led many authors to classify this mutation as inconsistent, non-pathogenetic, and consequently not eligible to the current pharmacological treatments for FD. To shed light on the cellular processes affected by this mutation and to assess if the biochemical pathways involved with, could really have a significant pathogenetic impact, we studied the mutation in silico and in COS-7 and HEK 293 cell models. We found p.Ser126Gly, even retaining both high degree of synthesis and residual activity, is mostly stacked into the ER inducing unfolded protein response (UPR) with reduced trafficking to the lysosome. These data strongly suggest that p.Ser126Gly could trigger a pathogenetic mechanism different from the classic and well assessed increased turnover with loss of biological activity described for other missense mutations. This mechanism seems mainly related to a negative gain of function, with ER retention and UPR activation and could lead, via inflammation and/or apoptosis, to irreversible cell damage.
Collapse
Affiliation(s)
- Concetta Riillo
- Magna Graecia University of Catanzaro Health Sciences Department, Italy
| | - Giuseppe Bonapace
- Magna Graecia University of Catanzaro Health Sciences Department, Italy.
| | | | - Simona Sestito
- Magna Graecia University of Catanzaro Medical and Surgical Sciences Department, Italy
| | | | - Daniela Concolino
- Magna Graecia University of Catanzaro Health Sciences Department, Italy
| |
Collapse
|
7
|
Blotas C, Férec C, Moisan S. Tissue-Specific Regulation of CFTR Gene Expression. Int J Mol Sci 2023; 24:10678. [PMID: 37445855 DOI: 10.3390/ijms241310678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
More than 2000 variations are described within the CFTR (Cystic Fibrosis Transmembrane Regulator) gene and related to large clinical issues from cystic fibrosis to mono-organ diseases. Although these CFTR-associated diseases have been well documented, a large phenotype spectrum is observed and correlations between phenotypes and genotypes are still not well established. To address this issue, we present several regulatory elements that can modulate CFTR gene expression in a tissue-specific manner. Among them, cis-regulatory elements act through chromatin loopings and take part in three-dimensional structured organization. With tissue-specific transcription factors, they form chromatin modules and can regulate gene expression. Alterations of specific regulations can impact and modulate disease expressions. Understanding all those mechanisms highlights the need to expand research outside the gene to enhance our knowledge.
Collapse
Affiliation(s)
- Clara Blotas
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Stéphanie Moisan
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHU Brest, F-29200 Brest, France
| |
Collapse
|
8
|
Rajkumar DS, Murugan G, Padmanaban R. Unraveling the interaction of bisphenol A with collagen and its effect on conformational and thermal stability. Biophys Chem 2023; 298:107026. [PMID: 37182236 DOI: 10.1016/j.bpc.2023.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Evidence suggests the association of bisphenol A (BPA) with increased collagen (COL) expression in the development of fibrosis. Ultraviolet and fluorescence spectra on collagen-BPA interaction showed that 100 ng/ml of BPA initiated loosening of protein backbone through unfolding with exposure of tyrosine residues resulting in an intermediate "Molten Globule" state, which later aggregated with 1 μg/ml of BPA indicated with an apparent red-shift. Conformational changes with CD and ATR-FTIR showed disappearance of negative band with broadening and shifting of peptide carbonyl groups. Light scattering findings with TEM images presented initial dissolution followed by unordered thick fibrillar bundles with 30 μg/ml BPA. The complex was pH sensitive, with calorimetric thermogram revealing increased thermal stability requiring 83°C to denature. Hydrogen bonds of 2.8 Å with hydrophobic interactions of BPA in all grooves of collagen molecule with same pattern and binding energy (-4.1 to -3.9 kcal/mol) confirmed the intensity of aggregate formation via in-silico docking.
Collapse
Affiliation(s)
- Divya Sangeetha Rajkumar
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Gopinath Murugan
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics & Interface Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India.
| |
Collapse
|
9
|
Bose A, Kasle G, Jana R, Maulik M, Thomas D, Mulchandani V, Mukherjee P, Koval M, Das Sarma J. Regulatory role of endoplasmic reticulum resident chaperone protein ERp29 in anti-murine β-coronavirus host cell response. J Biol Chem 2023; 299:102836. [PMID: 36572185 PMCID: PMC9788854 DOI: 10.1016/j.jbc.2022.102836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/25/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine β-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where β-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.
Collapse
Affiliation(s)
- Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Grishma Kasle
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Rishika Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Deepthi Thomas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Vaishali Mulchandani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Priyanka Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Michael Koval
- Departments of Medicine and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| |
Collapse
|
10
|
Inflammation and Infection in Cystic Fibrosis: Update for the Clinician. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121898. [PMID: 36553341 PMCID: PMC9777099 DOI: 10.3390/children9121898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022]
Abstract
Inflammation and infection play an important role in the pathophysiology of cystic fibrosis, and they are significant causes of morbidity and mortality in CF. The presence of thick mucus in the CF airways predisposes to local hypoxia and promotes infection and inflammation. A vicious cycle of airway obstruction, inflammation, and infection is of critical importance for the progression of the disease, and new data elucidate the different factors that influence it. Recent research has been focused on improving infection and inflammation in addition to correcting the basic gene defect. This review aims to summarize important advances in infection and inflammation as well as the effect of new treatments modulating the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. New approaches to target infection and inflammation are being studied, including gallium, nitric oxide, and phage therapy for infection, along with retinoids and neutrophil elastase inhibitors for inflammation.
Collapse
|
11
|
Evaluation of aminopyrrolidine amide to improve chloride transport in CFTR-defective cells. Bioorg Med Chem Lett 2022; 72:128866. [PMID: 35752380 DOI: 10.1016/j.bmcl.2022.128866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
The aminopyrrolidine amide PF-429242 is a specific inhibitor of the Site-1 Protease which is responsible for the cleavage, and thus the activation of the Activating Transcription Factor6 that down regulates many genes, during the Unfolded Protein Response. We hypothesized that PF-429242 could be used to prevent the ATF6-dependent down regulation of some genes. We chose the CFTR gene encoding the CFTR chloride channel as a model because it is down-regulated by ATF6 in Cystic Fibrosis. We evaluated the action of PF-429242 in human bronchial cells expressing the most frequent mutation of CFTR (p.Phe508del) found in patients. We observed that PF-429242 increases the synthesis of the mRNA and the protein encoded by the CFTR gene harbouring the mutation. We also observed that PF-429242 alleviates the defects of the p.Phe508del-CFTR channel in human Cystic Fibrosis cells. Our results suggest that aminopyrrolidine amide is a potential therapeutic target for Cystic Fibrosis that could also have beneficial effects in other diseases involving CFTR, such as the Chronic Obstructive Pulmonary Disease.
Collapse
|
12
|
Ribeiro CMP, Hull-Ryde EA. Functional role of the ER stress transducer IRE1α in CF airway epithelial inflammation. Curr Opin Pharmacol 2022; 65:102258. [PMID: 35749907 DOI: 10.1016/j.coph.2022.102258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Excessive and chronic airway inflammation associated with increased morbidity and mortality is a hallmark of cystic fibrosis (CF) airway disease. Previous studies underscored the role of endoplasmic reticulum (ER) signaling in CF airway inflammatory responses. In this review we discuss 1) how airway inflammation induces ER stress-triggered activation of the unfolded protein response and 2) the functional importance of the ER stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway epithelial inflammatory responses. We also briefly review the current understanding of IRE1α activation and the development of small molecules aimed at modulating IRE1α kinase and RNase activities. Inhibition of IRE1α kinase and RNase may be considered as a novel therapeutic strategy to ameliorate the robust inflammatory status of CF airways.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599-7248, USA.
| | - Emily A Hull-Ryde
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA
| |
Collapse
|
13
|
Cui X, Zhang Y, Lu Y, Xiang M. ROS and Endoplasmic Reticulum Stress in Pulmonary Disease. Front Pharmacol 2022; 13:879204. [PMID: 35559240 PMCID: PMC9086276 DOI: 10.3389/fphar.2022.879204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Pulmonary diseases are main causes of morbidity and mortality worldwide. Current studies show that though specific pulmonary diseases and correlative lung-metabolic deviance own unique pathophysiology and clinical manifestations, they always tend to exhibit common characteristics including reactive oxygen species (ROS) signaling and disruptions of proteostasis bringing about accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER is generated by the unfolded protein response. When the adaptive unfolded protein response (UPR) fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis, which is called ER stress. The ER stress mainly includes the accumulation of misfolded and unfolded proteins in lumen and the disorder of Ca2+ balance. ROS mediates several critical aspects of the ER stress response. We summarize the latest advances in of the UPR and ER stress in the pathogenesis of pulmonary disease and discuss potential therapeutic strategies aimed at restoring ER proteostasis in pulmonary disease.
Collapse
Affiliation(s)
- Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingdong Lu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Papendorf JJ, Krüger E, Ebstein F. Proteostasis Perturbations and Their Roles in Causing Sterile Inflammation and Autoinflammatory Diseases. Cells 2022; 11:cells11091422. [PMID: 35563729 PMCID: PMC9103147 DOI: 10.3390/cells11091422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Proteostasis, a portmanteau of the words protein and homeostasis, refers to the ability of eukaryotic cells to maintain a stable proteome by acting on protein synthesis, quality control and/or degradation. Over the last two decades, an increasing number of disorders caused by proteostasis perturbations have been identified. Depending on their molecular etiology, such diseases may be classified into ribosomopathies, proteinopathies and proteasomopathies. Strikingly, most—if not all—of these syndromes exhibit an autoinflammatory component, implying a direct cause-and-effect relationship between proteostasis disruption and the initiation of innate immune responses. In this review, we provide a comprehensive overview of the molecular pathogenesis of these disorders and summarize current knowledge of the various mechanisms by which impaired proteostasis promotes autoinflammation. We particularly focus our discussion on the notion of how cells sense and integrate proteostasis perturbations as danger signals in the context of autoinflammatory diseases to provide insights into the complex and multiple facets of sterile inflammation.
Collapse
|
15
|
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, De Rose V. CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells 2022; 11:cells11071243. [PMID: 35406809 PMCID: PMC8998122 DOI: 10.3390/cells11071243] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding for the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, expressed on the apical surface of epithelial cells. CFTR absence/dysfunction results in ion imbalance and airway surface dehydration that severely compromise the CF airway microenvironment, increasing infection susceptibility. Recently, novel therapies aimed at correcting the basic CFTR defect have become available, leading to substantial clinical improvement of CF patients. The restoration or increase of CFTR function affects the airway microenvironment, improving local defence mechanisms. CFTR modulator drugs might therefore affect the development of chronic airway infections and/or improve the status of existing infections in CF. Thus far, however, the full extent of these effects of CFTR-modulators, especially in the long-term remains still unknown. This review aims to provide an overview of current evidence on the potential impact of CFTR modulators on airway infections in CF. Their role in affecting CF microbiology, the susceptibility to infections as well as the potential efficacy of their use in preventing/decreasing the development of chronic lung infections and the recurrent acute exacerbations in CF will be critically analysed.
Collapse
Affiliation(s)
- Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy;
| | - Barbara Messore
- Adult Cystic Fibrosis Centre, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Nicola Ivan Loré
- WHO Collaborating Centre and TB Supranational Reference Laboratory, Emerging Bacterial Pathogens Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Irene Esposito
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Elisabetta Bignamini
- Paediatric Pulmonology Unit, Regina Margherita Hospital AOU Città della Salute e della Scienza, 10126 Torino, Italy; (I.E.); (E.B.)
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
- Correspondence:
| |
Collapse
|