1
|
Yang L, Gao ZW, Wang X, Wu XN, Li SM, Dong K, Zhu XM. The different effects of four adenosine receptors in liver fibrosis. Front Pharmacol 2024; 15:1424624. [PMID: 39290867 PMCID: PMC11405188 DOI: 10.3389/fphar.2024.1424624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background The adenosine-adenosine receptor pathway plays important roles in the immune system and inflammation. Four adenosine receptors (i.e., A1R, A2AR, A2BR, and A3R) have been identified. However, the roles of these receptors were different in the disease progress and even play opposite roles in the same disease. This study aims to investigate the roles of A1R/A2AR/A2BR/A3R activation in liver fibrosis. Methods Intraperitoneal injection of CCl4 into C57BL/6 mice was used to induce liver fibrosis in the models. Adenosine receptor agonists CCPA, CGS21680, BAY 60-6583, and namodenoson were used for A1R/A2AR/A2BR/A3R activation, respectively. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were used to evaluate the liver function. Hematoxylin and eosin (H&E) staining was used to investigate the pathological damage. Masson staining and Sirius Red staining were performed to evaluate the degree of collagen deposition. CCK8 and scratch assays were used to investigate the proliferation and migration ability of hepatic stellate cells (HSCs). Results By using liver fibrosis mouse models, we observed that the A1R and A2AR agonists aggravated liver fibrosis, characterized by increasing ALT and AST levels, more serious liver pathological damage, and collagen deposition. However, the A2BR and A3R agonists alleviated liver fibrosis. Moreover, the A1R and A2AR agonist treatment promotes the proliferation and migration of HSC line LX2, while A2BR and A3R agonist treatment inhibited LX2 proliferation and migration. Consistently, A1R and A2AR agonist treatment elevated the expression of α-SMA and Col1α1 in LX2, whereas A2BR and A3R agonist treatment inhibited the expression of α-SMA and Col1α1 in LX2 cells. Additionally, 5'-N-ethyl-carboxamidoadenosine (NECA), a metabolically stable adenosine analog, alleviated liver fibrosis and inhibited LX2 cell activity, proliferation, and migration. Conclusion This study demonstrated the different roles of A1R/A2AR/A2BR/A3R during liver fibrosis development via regulating the HSC activity and proliferation.
Collapse
Affiliation(s)
- Lan Yang
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhao-Wei Gao
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xi Wang
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xia-Nan Wu
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Si-Min Li
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ke Dong
- Department of clinical diagnose, Tangdu hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiao-Ming Zhu
- Department of Obstetrics and Gynecology, Hainan Branch of PLA General Hospital, Sanya, China
| |
Collapse
|
2
|
Allard B, Jacoberger-Foissac C, Cousineau I, Bareche Y, Buisseret L, Chrobak P, Allard D, Pommey S, Ah-Pine F, Duquenne S, Picard F, Stagg J. Adenosine A2A receptor is a tumor suppressor of NASH-associated hepatocellular carcinoma. Cell Rep Med 2023; 4:101188. [PMID: 37729873 PMCID: PMC10518627 DOI: 10.1016/j.xcrm.2023.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/22/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
Inhibition of adenosine A2A receptor (A2AR) is a promising approach for cancer immunotherapy currently evaluated in several clinical trials. We here report that anti-obesogenic and anti-inflammatory functions of A2AR, however, significantly restrain hepatocellular carcinoma (HCC) development. Adora2a deletion in mice triggers obesity, non-alcoholic steatohepatitis (NASH), and systemic inflammation, leading to spontaneous HCC and promoting dimethylbenzyl-anthracene (DMBA)- or diethylnitrosamine (DEN)-induced HCC. Conditional Adora2a deletion reveals critical roles of myeloid and hepatocyte-derived A2AR signaling in restraining HCC by limiting hepatic inflammation and steatosis. Remarkably, the impact of A2AR pharmacological blockade on HCC development is dependent on pre-existing NASH. In support of our animal studies, low ADORA2A gene expression in human HCC is associated with cirrhosis, hepatic inflammation, and poor survival. Together, our study uncovers a previously unappreciated tumor-suppressive function for A2AR in the liver and suggests caution in the use of A2AR antagonists in patients with NASH and NASH-associated HCC.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montreal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - Célia Jacoberger-Foissac
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montreal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Cousineau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montreal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - Yacine Bareche
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montreal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | | | - Pavel Chrobak
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montreal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - David Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montreal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - Sandra Pommey
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montreal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
| | - Franck Ah-Pine
- Department of Pathology, CHU Sud Réunion, Saint-Pierre, France
| | | | - Fabien Picard
- Montréal Heart Institute, Cardiology Department, Université de Montréal, Montreal, QC, Canada; Hopital Cochin, Cardiology Department, Université de Paris, Paris, France
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montreal, QC, Canada; Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
3
|
Ahmedy OA, Kamel MW, Abouelfadl DM, Shabana ME, Sayed RH. Berberine attenuates epithelial mesenchymal transition in bleomycin-induced pulmonary fibrosis in mice via activating A 2aR and mitigating the SDF-1/CXCR4 signaling. Life Sci 2023; 322:121665. [PMID: 37028546 DOI: 10.1016/j.lfs.2023.121665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
AIMS Berberine is endowed with anti-oxidant, anti-inflammatory and anti-fibrotic effects. This study explored the role of adenosine A2a receptor (A2aR) activation and SDF-1/CXCR4 signaling suppression in the protective effects of berberine in bleomycin-induced pulmonary fibrosis in mice. MAIN METHODS Pulmonary fibrosis was generated in mice by injecting bleomycin (40 U/kg, i.p.) on days 0, 3, 7, 10 and 14. Mice were treated with berberine (5 mg/kg, i.p.) from day 15 to day 28. KEY FINDINGS Severe lung fibrosis and increased collagen content were observed in the bleomycin-challenged mice. Pulmonary A2aR downregulation was documented in bleomycin-induced pulmonary fibrosis animals and was accompanied by enhanced expression of SDF-1/CXCR4. Moreover, TGF-β1elevation and pSmad2/3 overexpression were reported in parallel with enhanced epithelial mesenchymal transition (EMT) markers expression, vimentin and α-SMA. Besides, bleomycin significantly elevated the inflammatory and pro-fibrogenic mediator NF-κB p65, TNF-α and IL-6. Furthermore, bleomycin administration induced oxidative stress as depicted by decreased Nrf2, SOD, GSH and catalase levels. Interestingly, berberine administration markedly ameliorated the fibrotic changes in lungs by modulating the purinergic system through the inhibition of A2aR downregulation, mitigating EMT and effectively suppressing inflammation and oxidative stress. Strikingly, A2aR blockade by SCH 58261, impeded the pulmonary protective effect of berberine. SIGNIFICANCE These findings indicated that berberine could attenuate the pathological processes of bleomycin-induced pulmonary fibrosis at least partially via upregulating A2aR and mitigating the SDF-1/CXCR4 related pathway, suggesting A2aR as a potential therapeutic target for the management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Omaima A Ahmedy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| | - Marwa W Kamel
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, 11796, Egypt
| | - Dalia M Abouelfadl
- Department of Pathology, Medical and Clinical Studies, Research Institute, National Research Center, Egypt
| | - Marwa E Shabana
- Department of Pathology, Medical and Clinical Studies, Research Institute, National Research Center, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| |
Collapse
|
4
|
Chen Q, Guo J, Qiu T, Zhou J. Mechanism of ASK1 involvement in liver diseases and related potential therapeutic targets: A critical pathway molecule worth investigating. J Gastroenterol Hepatol 2023; 38:378-385. [PMID: 36533997 DOI: 10.1111/jgh.16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Since the discovery of apoptosis signal-regulated kinase 1 (ASK1), the signal transduction mechanism and pathophysiological process involved in its regulation have been continuously revealed. Many previous studies have identified that ASK1 is involved and plays a critical role in the development of diseases affecting the nervous, cardiac, renal, and other systems. As a mitogen-activated protein kinase (MAPK) kinase kinase, ASK1 mediates apoptosis, necrosis, inflammation, and other pathological processes by activating its downstream c-Jun N-terminal kinase (JNK)/p38 MAPK. Owing to the important role of ASK1, an increasing number of studies in recent years have focused on its status in liver-related diseases. In this paper, we review the mechanisms and targets of ASK1 in liver-related diseases to emphasize its important role in the development of liver disease.
Collapse
Affiliation(s)
- Qi Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Yu B, Zhang Y, Wang T, Guo J, Kong C, Chen Z, Ma X, Qiu T. MAPK Signaling Pathways in Hepatic Ischemia/Reperfusion Injury. J Inflamm Res 2023; 16:1405-1418. [PMID: 37012971 PMCID: PMC10065871 DOI: 10.2147/jir.s396604] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The mitogen-activated protein kinase signaling pathway can be activated by a variety of growth factors, cytokines, and hormones, and mediates numerous intracellular signals related to cellular activities, including cell proliferation, motility, and differentiation. It has been widely studied in the occurrence and development of inflammation and tumor. Hepatic ischemia-reperfusion injury (HIRI) is a common pathophysiological phenomenon that occurs in surgical procedures such as lobectomy and liver transplantation, which is characterized by severe inflammatory reaction after ischemia and reperfusion. In this review, we mainly discuss the role of p38, ERK1/2, JNK in MAPK family and TAK1 and ASK1 in MAPKKK family in HIRI, and try to find an effective treatment for HIRI.
Collapse
Affiliation(s)
- Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Yalong Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Chenyang Kong
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
- Correspondence: Tao Qiu, Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China, Tel +86-13995632367, Email
| |
Collapse
|
6
|
Zhao Y, Liu X, Yang G. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 2023; 60:3054-3070. [PMID: 36786912 DOI: 10.1007/s12035-023-03257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China. .,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
7
|
Wang ZY, Liu Y, Li SP, Li JJ, Zhang Z, Xiao XC, Ou Y, Wang H, Cai JZ, Yang S. Hypoxia inducible factor 1α promotes interleukin-1 receptor antagonist expression during hepatic ischemia-reperfusion injury. World J Gastroenterol 2022; 28:5573-5588. [PMID: 36304082 PMCID: PMC9594012 DOI: 10.3748/wjg.v28.i38.5573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a major risk associated with liver surgery and transplantation, and its pathological mechanism is complex. Interleukin-1 receptor antagonist (IL-1ra) can protect the liver from IRI. However, the regulatory mechanism of IL-1ra expression is still unclear.
AIM To identify the mechanism that could protect the liver in the early stage of IRI.
METHODS To screen the key genes in hepatic IRI, we performed RNA sequencing and gene enrichment analysis on liver tissue from mice with hepatic IRI. Subsequently, we verified the expression and effect of IL-1ra in hepatic IRI. We also used promoter mutagenesis and chromatin immunoprecipitation assay to search for the transcriptional regulatory sites of hypoxia-inducible factor (HIF)-1α. Finally, to explore the protective mechanism of ischemic preconditioning (IP), we examined the expression of HIF-1α and IL-1ra after IP.
RESULTS We identified IL-1ra as a key regulator in hepatic IRI. The expression of IL-1ra was significantly upregulated after hepatic IRI both in vivo and in vitro. Furthermore, we found that HIF-1α regulated Il-1ra transcription in response to hypoxia. Increased HIF-1α accumulation promoted IL-1ra expression, whereas inhibition of HIF-1α exhibited the opposite effect. We also confirmed a predominant role for hypoxia response element in the regulation of Il1ra transcription by HIF-1α activation. Of note, we demonstrated that IP protects against hepatic IRI by inducing IL-1ra expression, which is mediated through HIF-1α.
CONCLUSION We demonstrated that ischemia or hypoxia leads to increased expression of IL-1ra through HIF-1α. Importantly, IP protects the liver from IRI via the HIF-1α–IL-1ra pathway.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Yu Liu
- Department of Internal Medicine, Wangdingdi Hospital, Tianjin 300071, China
| | - Shi-Peng Li
- Liver Transplant Center of Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jian-Jun Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xue-Chun Xiao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Yang Ou
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Jin-Zhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Shuang Yang
- Institute of Transplantation Medicine, Tianjin First Central Hospital, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Lu Y, Liu Y, Zheng M. The role and regulation of apoptosis signal-regulated kinase 1 in liver disease. Mol Biol Rep 2022; 49:10905-10914. [DOI: 10.1007/s11033-022-07783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
|
9
|
Lin Y, Wang H, Du W, Huang Y, Gong W, Wang Q, Huang Z, Lin J. Analysis of the interaction between A 1 R and A 2A R proteins in living cells based on FRET imaging and batch processing method. JOURNAL OF BIOPHOTONICS 2022; 15:e202200056. [PMID: 35384328 DOI: 10.1002/jbio.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The quantitative FRET analysis of living cells is a tedious and time-consuming task for freshman lacks technical training. In this study, FRET imaging and batch processing method were combined to analyze reagents-induced interactions of A1 R and A2A R on cell membranes. Results showed that the method had taken less time than if cell-by-cell was analyzed. The accuracy and repeatability of FRET efficiency values were likewise improved by removing the interference from anthropogenic factors. Then this method was applied to rapidly analyze acetaldehyde-induced interactions, which analyzed hundreds of single-cell trends by one operation, and the results revealed that interactions were consistently attenuated in LX-2 cells, and statistical differences appeared after 30 min. Combined with batch processing method, procedures of cells FRET analysis have been greatly simplified without additional technical work, which has broad prospects in large-scale analysis of cellar protein interaction.
Collapse
Affiliation(s)
- Yating Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Haoyu Wang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Weiwei Du
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Yiming Huang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Wei Gong
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Qiwen Wang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Zufang Huang
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
| | - Juqiang Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, and Affiliated Hospital, Fujian Normal University, Fuzhou, Fujian, China
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| |
Collapse
|