1
|
Huang X, Liu X, Wang Q, Zhou Y, Deng S, He Q, Han H. Transcriptomic and targeted metabolome analyses revealed the regulatory mechanisms of the synthesis of bioactive compounds in Citrus grandis 'tomentosa'. PeerJ 2024; 12:e16881. [PMID: 38410798 PMCID: PMC10896087 DOI: 10.7717/peerj.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/12/2024] [Indexed: 02/28/2024] Open
Abstract
Exocarpium Citri Grandis is a popular Chinese herbal medicine prepared from Citrus grandis 'tomentosa', and it is rich in several bioactive compounds, including flavonoids, coumarins, and volatile oils. However, studies are yet to elucidate the mechanisms of synthesis and regulation of these active components. Therefore, the present study examined the profiles of flavonoids and volatile oil bioactive compounds in plant petals, fruits, and tender leaves, and then performed RNA sequencing on different tissues to identify putative genes involved in the synthesis of bioactive compounds. The results show that the naringin, naringenin, and coumarin contents of the fruitlets were significantly higher than those of the tender leaves and petals, whereas the tender leaves had significantly higher levels of rhoifolin and apigenin. A total of 49 volatile oils, of which 10 were mainly found in flowers, 15 were mainly found in fruits, and 18 were mainly found in leaves, were identified. RNA sequencing identified 9,942 genes that were differentially expressed in different tissues. Further analysis showed that 20, 15, and 74 differentially expressed genes were involved in regulating flavonoid synthesis, regulating coumarin synthesis, and synthesis and regulation of terpenoids, respectively. CHI1 (Cg7g005600) and 1,2Rhat gene (Cg1g023820) may be involved in the regulation of naringin synthesis in C. grandis fruits. The HDR (Cg8g006150) gene, HMGS gene (Cg5g009630) and GGPS (Cg1g003650) may be involved in the regulation and synthesis of volatile oils in C. grandis petals. Overall, the findings of the present study enhance our understanding of the regulatory mechanisms of secondary metabolites in C. grandis, which could promote the breeding of C. grandis with desired characteristics.
Collapse
Affiliation(s)
- Xinmin Huang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Xiaoli Liu
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Qi Wang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Yanqing Zhou
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Shiting Deng
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Qinqin He
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
| | - Hanbing Han
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
- Guangdong Provincial Engineering Technique Research Center for Exocarpium Citri Grandis Planting and Processing, Maoming, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
2
|
Liang M, Huai B, Lin J, Liang X, He H, Bai M, Wu H. Ca2+- and Zn2+-dependent nucleases co-participate in nuclear DNA degradation during programmed cell death in secretory cavity development in Citrus fruits. TREE PHYSIOLOGY 2024; 44:tpad122. [PMID: 37738622 DOI: 10.1093/treephys/tpad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Calcium (Ca2+)- and zinc Zn2+-dependent nucleases play pivotal roles in plant nuclear DNA degradation in programmed cell death (PCD). However, the mechanisms by which these two nucleases co-participate in PCD-associated nuclear DNA degradation remain unclear. Here, the spatiotemporal expression patterns of two nucleases (CrCAN and CrENDO1) were analyzed qualitatively and quantitatively during PCD in secretory cavity formation in Citrus reticulata 'Chachi' fruits. Results show that the middle and late initial cell stages and lumen-forming stages are key stages for nuclear degradation during the secretory cavity development. CAN and ENDO1 exhibited potent in vitro DNA degradation activity at pH 8.0 and pH 5.5, respectively. Quantitative real-time reverse-transcription polymerase chain reaction, in situ hybridization assays, the subcellular localization of Ca2+ and Zn2+, and immunocytochemical localization showed that CrCAN was activated at the middle and late initial cell stages, while CrENDO1 was activated at the late initial cell and lumen-forming stages. Furthermore, we used immunocytochemical double-labelling to simultaneously locate CrCAN and CrENDO1. The DNA degradation activity of the two nucleases was verified by simulating the change of intracellular pH in vitro. Our results also showed that CrCAN and CrENDO1 worked respectively and co-participated in nuclear DNA degradation during PCD of secretory cavity cells. In conclusion, we propose the model for the synergistic effect of Ca2+- and Zn2+-dependent nucleases (CrCAN and CrENDO1) in co-participating in nuclear DNA degradation during secretory cavity cell PCD in Citrus fruits. Our findings provide direct experimental evidence for exploring different ion-dependent nucleases involved in nuclear degradation during plant PCD.
Collapse
Affiliation(s)
- Minjian Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China
| | - Bin Huai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Junjun Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Xiangxiu Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Hanjun He
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Mei Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China
| |
Collapse
|
3
|
Chen X, Li Y, Pang Y, Shen W, Chen Q, Liu L, Luo X, Chen Z, Li X, Li Y, Zhang Y, Huang M, Yuan C, Wang D, Guan L, Liu Y, Yang Q, Chen H, Wu H, Yu F. A comparative analysis of morphology, microstructure, and volatile metabolomics of leaves at varied developmental stages in Ainaxiang ( Blumea balsamifera (Linn.) DC.). FRONTIERS IN PLANT SCIENCE 2023; 14:1285616. [PMID: 38034556 PMCID: PMC10682096 DOI: 10.3389/fpls.2023.1285616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Introduction Ainaxiang (Blumea balsamifera (Linn.) DC.) is cultivated for the extraction of (-)-borneol and other pharmaceutical raw materials due to its abundant volatile oil. However, there is limited knowledge regarding the structural basis and composition of volatile oil accumulation in fresh B. balsamifera leaves. Methods To address this problem, we compare the fresh leaves' morphology, microstructure, and volatile metabonomic at different development stages, orderly defined from the recently unfolded young stage (S1) to the senescent stage (S4). Results and discussion Distinct differences were observed in the macro-appearance and microstructure at each stage, particularly in the B. balsamifera glandular trichomes (BbGTs) distribution. This specialized structure may be responsible for the accumulation of volatile matter. 213 metabolites were identified through metabolomic analysis, which exhibited spatiotemporal accumulation patterns among different stages. Notably, (-)-borneol was enriched at S1, while 10 key odor metabolites associated with the characteristic balsamic, borneol, fresh, and camphor aromas of B. balsamifera were enriched in S1 and S2. Ultra-microstructural examination revealed the involvement of chloroplasts, mitochondria, endoplasmic reticulum, and vacuoles in the synthesizing, transporting, and storing essential oils. These findings confirm that BbGTs serve as the secretory structures in B. balsamifera, with the population and morphology of BbGTs potentially serving as biomarkers for (-)-borneol accumulation. Overall, young B. balsamifera leaves with dense BbGTs represent a rich (-)-borneol source, while mesophyll cells contribute to volatile oil accumulation. These findings reveal the essential oil accumulation characteristics in B. balsamifera, providing a foundation for further understanding.
Collapse
Affiliation(s)
- Xiaolu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Yanqun Li
- Medicinal Plants Research Center, South China Agricultural University, Guangzhou, China
| | - Yuxin Pang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wanyun Shen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Liwei Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xueting Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Zhenxia Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Xingfei Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Yulan Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Yingying Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Mei Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Chao Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Dan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| | - Yuchen Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Quan Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Hong Wu
- Medicinal Plants Research Center, South China Agricultural University, Guangzhou, China
| | - Fulai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Blumea balsamifera, Haikou, China
| |
Collapse
|
4
|
Krela R, Poreba E, Lesniewicz K. Variations in the enzymatic activity of S1-type nucleases results from differences in their active site structures. Biochim Biophys Acta Gen Subj 2023; 1867:130424. [PMID: 37463618 DOI: 10.1016/j.bbagen.2023.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/27/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND S1-like nucleases are widespread enzymes commonly used in biotechnology and molecular biology. Although it is commonly believed that they are mainly Zn2+-dependent acidic enzymes, we have found that numerous members of this family deviate from this rule. Therefore, in this work, we decided to check how broad is the range of non‑zinc-dependent S1-like nucleases and what is the molecular basis of their activities. METHODS S1-like nucleases chosen for analysis were achieved through heterologous expression in appropriate eukaryotic hosts. To characterize nucleases' active-site properties, point mutations were introduced in selected positions. The enzymatic activities of wild-type and mutant nucleases were tested by in-gel nuclease activity assay. RESULTS We discovered that S1-like nucleases encoded by non-vascular plants and single-celled protozoa, like their higher plant homologues, exhibit a large variety of catalytic properties. We have shown that these individual properties are determined by specific non-conserved active site residues. CONCLUSIONS Our findings demonstrate that mutations that occur during evolution can significantly alter the catalytic properties of S1-like nucleases. As a result, different ions can compete for particular S1-type nucleases' active sites. This phenomenon undermines the existing classification of S1-like nucleases. GENERAL SIGNIFICANCE Our findings have numerous implications for applications and understanding the S1-like nucleases' biological functions. For example, new biotechnological applications should take into account their unexpected catalytic properties. Moreover, these results demonstrate that the trinuclear zinc-based model commonly used to characterize the catalytic activities of S1-like nucleases is insufficient to explain the actions of non‑zinc-dependent members of this family.
Collapse
Affiliation(s)
- Rafal Krela
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska St. 89, 61-614 Poznan, Poland; Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice 370 05, Czech Republic.
| | - Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, Umultowska St. 89, 61-614 Poznan, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska St. 89, 61-614 Poznan, Poland.
| |
Collapse
|
5
|
Huai B, Liang M, Lin J, Tong P, Bai M, He H, Liang X, Chen J, Wu H. Involvement of Vacuolar Processing Enzyme CgVPE1 in Vacuole Rupture in the Programmed Cell Death during the Development of the Secretory Cavity in Citrus grandis 'Tomentosa' Fruits. Int J Mol Sci 2023; 24:11681. [PMID: 37511439 PMCID: PMC10380461 DOI: 10.3390/ijms241411681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Vacuolar processing enzymes (VPEs) with caspase-1-like activity are closely associated with vacuole rupture. The destruction of vacuoles is one of the characteristics of programmed cell death (PCD) in plants. However, whether VPE is involved in the vacuole destruction of cells during secretory cavity formation in Citrus plants remains unclear. This research identified a CgVPE1 gene that encoded the VPE and utilized cytology and molecular biology techniques to explore its temporal and spatial expression characteristics during the PCD process of secretory cavity cells in the Citrus grandis 'Tomentosa' fruit. The results showed that CgVPE1 is an enzyme with VPE and caspase-1-like activity that can self-cleave into a mature enzyme in an acidic environment. CgVPE1 is specifically expressed in the epithelial cells of secretory cavities. In addition, it mainly accumulates in vacuoles before it is ruptured in the secretory cavity cells. The spatial and temporal immunolocalization of CgVPE1 showed a strong relationship with the change in vacuole structure during PCD in secretory cavity cells. In addition, the change in the two types of VPE proteins from proenzymes to mature enzymes was closely related to the change in CgVPE1 localization. Our results indicate that CgVPE1 plays a vital role in PCD, causing vacuole rupture in cells during the development of the secretory cavity in C. grandis 'Tomentosa' fruits.
Collapse
Affiliation(s)
- Bin Huai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Minjian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junjun Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Panpan Tong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiangxiu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiezhong Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Bai M, Tong P, Luo Q, Shang N, Huang H, Huai B, Wu H. CgPG21 is involved in the degradation of the cell wall during the secretory cavity formation in Citrus grandis 'Tomentosa' fruits. PLANT CELL REPORTS 2023:10.1007/s00299-023-03032-7. [PMID: 37219583 DOI: 10.1007/s00299-023-03032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION CgPG21 is mainly located in the cell wall, participates in the intercellular layer degradation of the cell wall during the formation of secretory cavity in the intercellular space-forming and lumen-expanding stages. The secretory cavity is a common structure in Citrus plants and is the main site for synthesis and accumulation of medicinal ingredients. The secretory cavity is formed in lysogenesis, when epithelial cells enter a process of programmed cell death. Pectinases are known to be involved in degradation of the cell wall during the cytolysis of secretory cavity cells, but the changes in cell structure, the dynamic characteristics of cell wall polysaccharides and the related genes regulating cell wall degradation are unclear. In this study, electron microscopy and cell wall polysaccharide-labeling techniques were used to study the main characteristics of cell wall degradation of the secreting cavity of Citrus grandis 'Tomentosa' fruits. At the same time, the full CDS length of the pectinase gene CgPG21 was cloned, encoding a protein composed of 480 amino acids. CgPG21 is mainly located in the cell wall, participates in the degradation of the intercellular layer of the cell wall during the development of the secretory cavity, and plays an important role in the formation of the secretory cavity in the intercellular space-forming and lumen-expanding stages. With the development of secretory cavity, the cell wall polysaccharides of epithelial cells gradually degrade. CgPG21 is mainly involved in the intercellular layer degradation.
Collapse
Affiliation(s)
- Mei Bai
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Panpan Tong
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Luo
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Shang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hailan Huang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Huai
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Wu
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
7
|
Huai B, Liang MJ, Bai M, He HJ, Chen JZ, Wu H. Localization of CgVPE1 in secondary cell wall formation during tracheary element differentiation in the pericarp of Citrus grandis 'Tomentosa' fruits. PLANTA 2022; 256:89. [PMID: 36169724 DOI: 10.1007/s00425-022-04001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
CgVPE1 is important in the differentiation of TE cells in C. grandis 'Tomentosa' fruits as it may directly affects secondary cell wall construction while participating in PCD. The vacuolar processing enzyme (VPE) plays an important role in both developmental and environmentally inducible programmed cell death (PCD); it was originally identified as a cysteine protease localized in the vacuole to activate and mature vacuolar proteins in plants. Interestingly, we found a VPE called CgVPE1 to be associated with deposition of the secondary cell wall in tracheary element (TE) cells in the pericarp of Citrus grandis 'Tomentosa' fruits. We then used ultrathin sections and the TUNEL assay to verify that PCD is involved in TE development. Furthermore, CgVPE1 was found to be mainly expressed in secretory cavities and TEs in the pericarp of Citrus grandis 'Tomentosa' fruits. Immunolocalization of CgVPE1 in the pericarp indicated that CgVPE1 is mainly distributed in the central large vacuole, endoplasmic reticulum, Golgi vesicles, cytosol, and secondary wall before TE maturation. CgVPE1 appeared earlier in the endoplasmic reticulum and Golgi vesicles of TEs cells. The vesicles containing CgVPE1 near the large central vacuole and secondary wall were observed, respectively. CgVPE1 proteins content in the cytoplasm decreased sharply, while the CgVPE1 content in the secondary cell wall did not change significantly after vacuole rupture. CgVPE1 protein contents in the secondary cell wall were significantly reduced until the TE cells developed into hollow thick-walled cells. Furthermore, labeling of VPE homologues in Arabidopsis thaliana using immunoelectron microscopy with anti-CgVPE1 antibody revealed that VPE homologues were specifically distributed in the secondary cell wall of stem TEs. Overall, these results suggested that CgVPE1 is not only involved PCD during TE cell development; furthermore, it may directly participate in the construction of plant secondary cell walls.
Collapse
Affiliation(s)
- B Huai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M J Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - H J He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - J Z Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - H Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|