1
|
Hirano F, Kondo N, Murata Y, Sudani A, Temma T. Assessing the effectiveness of fluorinated and α-methylated 3-boronophenylalanine for improved tumor-specific boron delivery in boron neutron capture therapy. Bioorg Chem 2024; 142:106940. [PMID: 37939508 DOI: 10.1016/j.bioorg.2023.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
A [10B]boron agent and a nuclear imaging probe for pharmacokinetic estimation form the fundamental pair in successful boron neutron capture therapy (BNCT). However, 4-[10B]borono-l-phenylalanine (BPA), used in clinical BNCT, has undesirable water solubility and tumor selectivity. Therefore, we synthesized fluorinated and α-methylated 3-borono-l-phenylalanine (3BPA) derivatives to realize improved water solubility, tumor targetability, and biodistribution. All 3BPA derivatives exhibited over 10 times higher water solubility than BPA. Treatment with α-methylated 3BPA derivatives resulted in decreased cell uptake via l-type amino acid transporter (LAT) 2 while maintaining LAT1 recognition, thereby significantly improving LAT1/LAT2 selectivity. Biodistribution studies showed that fluorinated α-methyl 3BPA derivatives exhibited reduced boron accumulation in nontarget tissues, including muscle, skin, and plasma. Consequently, these derivatives demonstrated significantly improved tumor-to-normal tissue ratios compared to 3BPA and BPA. Overall, fluorinated α-methyl 3BPA derivatives with the corresponding radiofluorinated compounds hold potential as promising agents for future BNCT/PET theranostics.
Collapse
Affiliation(s)
- Fuko Hirano
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Naoya Kondo
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yusuke Murata
- Stella Pharma Corporation Sakai R&D Center, Bldg. C-23, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Aya Sudani
- Stella Pharma Corporation Sakai R&D Center, Bldg. C-23, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takashi Temma
- Department of Biofunctional Analysis, Graduate School of Pharmaceutical Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
2
|
Coghi P, Li J, Hosmane NS, Zhu Y. Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Med Res Rev 2023; 43:1809-1830. [PMID: 37102375 DOI: 10.1002/med.21964] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
Boron neutron capture therapy (BNCT) is one of the most promising treatments among neutron capture therapies due to its long-term clinical application and unequivocally obtained success during clinical trials. Boron drug and neutron play an equivalent crucial role in BNCT. Nevertheless, current clinically used l-boronophenylalanine (BPA) and sodium borocaptate (BSH) suffer from large uptake dose and low blood to tumor selectivity, and that initiated overwhelm screening of next generation of BNCT agents. Various boron agents, such as small molecules and macro/nano-vehicles, have been explored with better success. In this featured article, different types of agents are rationally analyzed and compared, and the feasible targets are shared to present a perspective view for the future of BNCT in cancer treatment. This review aims at summarizing the current knowledge of a variety of boron compounds, reported recently, for the application of BCNT.
Collapse
Affiliation(s)
- Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jinxin Li
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | |
Collapse
|
3
|
Perico D, Di Silvestre D, Imamichi S, Sanada Y, Masutani M, Mauri PL. Systems Biology Approach to Investigate Biomarkers, Boron-10 Carriers, and Mechanisms Useful for Improving Boron Neutron Capture Therapy. Cancer Biother Radiopharm 2022; 38:152-159. [PMID: 36269655 DOI: 10.1089/cbr.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Systems biology approach, carried out with high-throughput omics technologies, has become a fundamental aspect of the study of complex diseases like cancer. It can molecularly characterize subjects, physiopathological conditions, and interactions, allowing a precise description, to reach personalized medicine. In particular, proteomics, typically performed with liquid chromatography coupled to mass spectrometry, is a powerful tool for systems biology, giving the possibility to perform diagnosis, patient stratification, and prediction of therapy effects. Boron Neutron Capture Therapy (BNCT) is a selective antitumoral radiotherapy based on a nuclear reaction that occurs when 10B atoms are irradiated by low-energy thermal neutrons, leading to cell death, thanks to the production of high-energy α particles. Since BNCT is recently becoming an important therapy for the treatment of different types of solid tumors such as gliomas, head and neck cancers, and others, it can take advantage of molecular investigation to improve the understanding of effects and mechanisms and so help its clinical applications. In this context, proteomics can provide a better understanding of mechanisms related to BNCT effect, identify potential biomarkers, and individuate differential responses by specific patients, stratifying responders and nonresponders. Another key aspect of BNCT is the study of new potential Boron-10 carriers to improve the selectivity of Boron delivery to tumors and proteomics can be important in this application, studying the effectiveness of new boron delivery agents, including protein-based carriers, also using computational studies that can investigate new molecules, such as boronated monoclonal antibodies, for improving BNCT.
Collapse
Affiliation(s)
- Davide Perico
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | - Shoji Imamichi
- Department of Molecular and Genomic Biomedicine, School of Biomedical Sciences, Nagasaki University Graduate, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan.,Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan
| | - Yu Sanada
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, School of Biomedical Sciences, Nagasaki University Graduate, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Pier Luigi Mauri
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
4
|
Zaboronok A, Khaptakhanova P, Uspenskii S, Bekarevich R, Mechetina L, Volkova O, Mathis BJ, Kanygin V, Ishikawa E, Kasatova A, Kasatov D, Shchudlo I, Sycheva T, Taskaev S, Matsumura A. Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments. Pharmaceutics 2022; 14:pharmaceutics14040761. [PMID: 35456595 PMCID: PMC9032815 DOI: 10.3390/pharmaceutics14040761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/24/2023] Open
Abstract
Sufficient boron-10 isotope (10B) accumulation by tumor cells is one of the main requirements for successful boron neutron capture therapy (BNCT). The inability of the clinically registered 10B-containing borophenylalanine (BPA) to maintain a high boron tumor concentration during neutron irradiation after a single injection has been partially solved by its continuous infusion; however, its lack of persistence has driven the development of new compounds that overcome the imperfections of BPA. We propose using elemental boron nanoparticles (eBNPs) synthesized by cascade ultrasonic dispersion and destruction of elemental boron microparticles and stabilized with hydroxyethylcellulose (HEC) as a core component of a novel boron drug for BNCT. These HEC particles are stable in aqueous media and show no apparent influence on U251, U87, and T98G human glioma cell proliferation without neutron beam irradiation. In BNCT experiments, cells incubated with eBNPs or BPA at an equivalent concentration of 40 µg 10B/mL for 24 h or control cells without boron were irradiated at an accelerator-based neutron source with a total fluence of thermal and epithermal neutrons of 2.685, 5.370, or 8.055 × 1012/cm2. The eBNPs significantly reduced colony-forming capacity in all studied cells during BNCT compared to BPA, verified by cell-survival curves fit to the linear-quadratic model and calculated radiobiological parameters, though the effect of both compounds differed depending on the cell line. The results of our study warrant further tumor targeting-oriented modifications of synthesized nanoparticles and subsequent in vivo BNCT experiments.
Collapse
Affiliation(s)
- Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +81-29-853-3220; Fax: +81-29-853-3214
| | - Polina Khaptakhanova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Street, 117393 Moscow, Russia; (P.K.); (S.U.)
| | - Sergey Uspenskii
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Street, 117393 Moscow, Russia; (P.K.); (S.U.)
| | - Raman Bekarevich
- The Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Microscopy Laboratory, Trinity College Dublin, The University of Dublin, D02 W272 Dublin, Ireland;
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Ludmila Mechetina
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, 8/2 Lavrentieva, 630090 Novosibirsk, Russia; (L.M.); (O.V.)
| | - Olga Volkova
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, 8/2 Lavrentieva, 630090 Novosibirsk, Russia; (L.M.); (O.V.)
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba 305-8576, Japan;
| | - Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia;
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Dmitrii Kasatov
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Ivan Shchudlo
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
| |
Collapse
|