1
|
Vandal M, Institoris A, Reveret L, Korin B, Gunn C, Hirai S, Jiang Y, Lee S, Lee J, Bourassa P, Mishra RC, Peringod G, Arellano F, Belzil C, Tremblay C, Hashem M, Gorzo K, Elias E, Yao J, Meilandt B, Foreman O, Roose-Girma M, Shin S, Muruve D, Nicola W, Körbelin J, Dunn JF, Chen W, Park SK, Braun AP, Bennett DA, Gordon GRJ, Calon F, Shaw AS, Nguyen MD. Loss of endothelial CD2AP causes sex-dependent cerebrovascular dysfunction. Neuron 2025:S0896-6273(25)00010-8. [PMID: 39892386 DOI: 10.1016/j.neuron.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/27/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
Polymorphisms in CD2-associated protein (CD2AP) predispose to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. Here, we show that loss of CD2AP in cerebral blood vessels is associated with cognitive decline in AD subjects and that genetic downregulation of CD2AP in brain vascular endothelial cells impairs memory function in male mice. Animals with reduced brain endothelial CD2AP display altered blood flow regulation at rest and during neurovascular coupling, defects in mural cell activity, and an abnormal vascular sex-dependent response to Aβ. Antagonizing endothelin-1 receptor A signaling partly rescues the vascular impairments, but only in male mice. Treatment of CD2AP mutant mice with reelin glycoprotein that mitigates the effects of CD2AP loss function via ApoER2 increases resting cerebral blood flow and even protects male mice against the noxious effect of Aβ. Thus, endothelial CD2AP plays critical roles in cerebrovascular functions and represents a novel target for sex-specific treatment in AD.
Collapse
Affiliation(s)
- Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Adam Institoris
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Louise Reveret
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Colin Gunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sotaro Hirai
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sukyoung Lee
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Jiyeon Lee
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Philippe Bourassa
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Govind Peringod
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Faye Arellano
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Camille Belzil
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Cyntia Tremblay
- Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Mada Hashem
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Kelsea Gorzo
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Esteban Elias
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Bill Meilandt
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Meron Roose-Girma
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Steven Shin
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Daniel Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wilten Nicola
- Departments of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jeff F Dunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wayne Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Sang-Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - David A Bennett
- Rush Alzheimer's disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Grant R J Gordon
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada.
| | - Andrey S Shaw
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA.
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada.
| |
Collapse
|
2
|
Duan S, Sheriff S, Elvis-Offiah UB, Witten BL, Sawyer TW, Sundaresan S, Cierpicki T, Grembecka J, Merchant JL. Clinically Defined Mutations in MEN1 Alter Its Tumor-suppressive Function Through Increased Menin Turnover. CANCER RESEARCH COMMUNICATIONS 2023; 3:1318-1334. [PMID: 37492626 PMCID: PMC10364643 DOI: 10.1158/2767-9764.crc-22-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/02/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Loss of the tumor suppressor protein menin is a critical event underlying the formation of neuroendocrine tumors (NET) in hormone-expressing tissues including gastrinomas. While aberrant expression of menin impairs its tumor suppression, few studies explore the structure-function relationship of clinical multiple endocrine neoplasia, type 1 (MEN1) mutations in the absence of a complete LOH at both loci. Here, we determined whether clinical MEN1 mutations render nuclear menin unstable and lead to its functional inactivation. We studied the structural and functional implications of two clinical MEN1 mutations (R516fs, E235K) and a third variant (A541T) recently identified in 10 patients with gastroenteropancreatic (GEP)-NETs. We evaluated the subcellular localization and half-lives of the mutants and variant in Men1-null mouse embryo fibroblast cells and in hormone-expressing human gastric adenocarcinoma and NET cell lines. Loss of menin function was assessed by cell proliferation and gastrin gene expression assays. Finally, we evaluated the effect of the small-molecule compound MI-503 on stabilizing nuclear menin expression and function in vitro and in a previously reported mouse model of gastric NET development. Both the R516fs and E235K mutants exhibited severe defects in total and subcellular expression of menin, and this was consistent with reduced half-lives of these mutants. Mutated menin proteins exhibited loss of function in suppressing tumor cell proliferation and gastrin expression. Treatment with MI-503 rescued nuclear menin expression and attenuated hypergastrinemia and gastric hyperplasia in NET-bearing mice. Clinically defined MEN1 mutations and a germline variant confer pathogenicity by destabilizing nuclear menin expression. Significance We examined the function of somatic and germline mutations and a variant of MEN1 sequenced from gastroenteropancreatic NETs. We report that these mutations and variant promote tumor cell growth and gastrin expression by rendering menin protein unstable and prone to increased degradation. We demonstrate that the menin-MLL (mixed lineage leukemia) inhibitor MI-503 restores menin protein expression and function in vitro and in vivo, suggesting a potential novel therapeutic approach to target MEN1 GEP-NETs.
Collapse
Affiliation(s)
- Suzann Duan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Sulaiman Sheriff
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Uloma B. Elvis-Offiah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Brandon L. Witten
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Travis W. Sawyer
- Department of Optical Sciences, University of Arizona Wyant College of Optical Sciences, Tucson, Arizona
| | - Sinju Sundaresan
- Department of Physiology, Midwestern University, Downers Grove, Illinois
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Juanita L. Merchant
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
3
|
Zhao Y, Zhao X, Wang J. Choline alleviated perinatal fluoride exposure-induced learning and memory impairment through α4β2 nAChRs and α7 nAChRs in offspring mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:511-521. [PMID: 36286330 DOI: 10.1002/tox.23692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Fluoride pollution is widely present in the living environment. As a critical period of brain development, the perinatal period is extremely vulnerable to fluoride. Studies have found that choline can protect the brain's memory and enhance the ability to focus. However, the effect of choline on perinatal fluoride-induced nerve damage remains unclear. Therefore, 32 Kunming newly conceived female mice and their offspring mice were randomly divided into control, NaF, LC + NaF, and HC + NaF groups, and the HE staining, Y-maze test, RT-PCR, western blotting, immunohistochemistry, etc. were used in this study. The results showed that fluoride decreased the brain organ coefficients and brain protein content (p < 0.05, p < 0.01), and caused histomorphological damage in the hippocampus and cortex, which suggested that fluoride affected the development of the brain and damaged the brain. Moreover, the results of the Y-maze test showed that fluoride increased the number of learning days, error reaction time, and total reaction time, and decreased the AchE activity in the brain (p < 0.05, p < 0.01), which indicated that fluoride reduced the learning and memory ability of the mice. Besides, the results showed that fluoride decreased the mRNA and protein expression levels of α4β2 nAChRs and α7 nAChRs in the hippocampus and cortex (p < 0.05, p < 0.01). However, perinatal choline supplementation reversed the aforementioned fluoride-induced changes. In short, these results demonstrated that choline alleviated perinatal fluoride-induced learning and memory impairment, which will provide a rationale for the mitigation and prevention of fluoride-induced brain damage.
Collapse
Affiliation(s)
- Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xiaojuan Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
- Science and Technology Research Center of China Customs, Beijing, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
4
|
Institoris A, Vandal M, Peringod G, Catalano C, Tran CH, Yu X, Visser F, Breiteneder C, Molina L, Khakh BS, Nguyen MD, Thompson RJ, Gordon GR. Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice. Nat Commun 2022; 13:7872. [PMID: 36550102 PMCID: PMC9780254 DOI: 10.1038/s41467-022-35383-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Functional hyperemia occurs when enhanced neuronal activity signals to increase local cerebral blood flow (CBF) to satisfy regional energy demand. Ca2+ elevation in astrocytes can drive arteriole dilation to increase CBF, yet affirmative evidence for the necessity of astrocytes in functional hyperemia in vivo is lacking. In awake mice, we discovered that functional hyperemia is bimodal with a distinct early and late component whereby arteriole dilation progresses as sensory stimulation is sustained. Clamping astrocyte Ca2+ signaling in vivo by expressing a plasma membrane Ca2+ ATPase (CalEx) reduces sustained but not brief sensory-evoked arteriole dilation. Elevating astrocyte free Ca2+ using chemogenetics selectively augments sustained hyperemia. Antagonizing NMDA-receptors or epoxyeicosatrienoic acid production reduces only the late component of functional hyperemia, leaving brief increases in CBF to sensory stimulation intact. We propose that a fundamental role of astrocyte Ca2+ is to amplify functional hyperemia when neuronal activation is prolonged.
Collapse
Affiliation(s)
- Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Milène Vandal
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Govind Peringod
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christy Catalano
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cam Ha Tran
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557-352, USA
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Department of Molecular and Integrative Physiology, Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Frank Visser
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cheryl Breiteneder
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo Molina
- Hotchkiss Brain Institute, Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1751, USA
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Roger J Thompson
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|