1
|
Zheng H, Jiao A, Liu H, Lei L, Ding R, Feng Z, Zhang D, Zhang L, Zhang B. Effect of Med1 on T cell development and CD4 + T cell differentiation in immune response. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1296-1303. [PMID: 38044640 PMCID: PMC10929871 DOI: 10.11817/j.issn.1672-7347.2023.220633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 12/05/2023]
Abstract
OBJECTIVES The differentiation of CD4+ T cells is regulated by a complex and fine signaling pathway composed of many molecules during immune response, and the molecular mechanism for regulating T-bet expression is unclear. Mediator complex subunit 1 (Med1) can combine with a variety of co-factors to regulate gene transcription, promote cell proliferation and survival, and affect invariant natural killer T cell (iNKT) development. This study aims to investigate the effect of Med1 on T cell development and CD4+ T cell differentiation in immune response. METHODS Mice with T cell-specific knockout of Med1 gene (Med1F/FCD4cre+, KO) were constructed and verified. The percentage and number of CD4+ and CD8+ T cells in thymus, spleen, and lymph nodes of KO mice and control (Con) mice (Med1F/FCD4cre-) were detected by flow cytometry. After 8 days of infection with lymphocytic choriomeningitis virus (LCMV), the percentage and number of CD4+ T cells or antigen-specific (GP66+) CD4+ T cells, the percentage and number of Th1 cells (Ly6c+PSGL1+) in CD4+ T cells or antigen-specific CD4+ T cells were examined in the spleen of mice. Moreover, the fluorescence intensity of T-bet in CD4+ T cells or antigen-specific CD4+ T cells was analyzed. RESULTS Compared with the Con group, the percentage and number of CD4+ T cells and CD8+ T cells in the thymus, CD4+ T cells in the spleen and lymph nodes of the KO group showed no significant differences (all P>0.05), but the percentage and number of CD8+ T cells in the spleen and lymph nodes of the KO group were diminished significantly (all P<0.05). After 8 days of infection with LCMV, there was no significant difference in the percentage and number of CD4+ T cells or antigen-specific CD4+ T cells in the spleen between the KO group and the Con group (all P>0.05), while in comparison with the Con group, the percentage and number of Th1 cells in CD4+ T cells or antigen-specific CD4+ T cells, and the expression of T-bet in CD4+ T cells or antigen-specific CD4+ T cells were significantly reduced in the spleen of the KO group (all P<0.05). CONCLUSIONS Specific knockout of Med1 in T cells does not affect the development of CD4+ and CD8+ T cells in the thymus, but does affect the maintenance of peripheral CD8+ T cells. In the immune response, Med1 gene deletion affects the expression of transcription factor T-bet, which in turn to reduce Th1 cell differentiation.
Collapse
Affiliation(s)
- Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061.
- Department of Laboratory Medicine, Xi'an Chest Hospital, Xi'an 710100.
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Renyi Ding
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061
| | - Lianjun Zhang
- Suzhou Institute of Systems Medicine, Suzhou Jiangshu 215123
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an 710061.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
2
|
Russi AE, Shivakumar P, Luo Z, Bezerra J. Plasticity between type 2 innate lymphoid cell subsets and amphiregulin expression regulates epithelial repair in biliary atresia. Hepatology 2023; 78:1035-1049. [PMID: 37078450 PMCID: PMC10524120 DOI: 10.1097/hep.0000000000000418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND AIMS Although a dysregulated type 1 immune response is integral to the pathogenesis of biliary atresia, studies in both humans and mice have uncovered a type 2 response, primarily driven by type 2 innate lymphoid cells. In nonhepatic tissues, natural type 2 innate lymphoid cell (nILC2s) regulate epithelial proliferation and tissue repair, whereas inflammatory ILC2s (iIlC2s) drive tissue inflammation and injury. The aim of this study is to determine the mechanisms used by type 2 innate lymphoid cell (ILC2) subpopulations to regulate biliary epithelial response to an injury. APPROACH AND RESULTS Using Spearman correlation analysis, nILC2 transcripts, but not those of iILC2s, are positively associated with cholangiocyte abundance in biliary atresia patients at the time of diagnosis. nILC2s are identified in the mouse liver through flow cytometry. They undergo expansion and increase amphiregulin production after IL-33 administration. This drives epithelial proliferation dependent on the IL-13/IL-4Rα/STAT6 pathway as determined by decreased nILC2s and reduced epithelial proliferation in knockout strains. The addition of IL-2 promotes inter-lineage plasticity towards a nILC2 phenotype. In experimental biliary atresia induced by rotavirus, this pathway promotes epithelial repair and tissue regeneration. The genetic loss or molecular inhibition of any part of this circuit switches nILC2s to inflammatory type 2 innate lymphoid cell-like, resulting in decreased amphiregulin production, decreased epithelial proliferation, and the full phenotype of experimental biliary atresia. CONCLUSIONS These findings identify a key function of the IL-13/IL-4Rα/STAT6 pathway in ILC2 plasticity and an alternate circuit driven by IL-2 to promote nILC2 stability and amphiregulin expression. This pathway induces epithelial homeostasis and repair in experimental biliary atresia.
Collapse
Affiliation(s)
- Abigail E Russi
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jorge Bezerra
- Department of Pediatrics, University of Texas Southwestern Medical Center and Children’s Health of Dallas, TX, USA
| |
Collapse
|
3
|
Chusilp S, Balsamo F, Li B, Vejchapipat P, Pierro A. Development of liver inflammatory injury in biliary atresia: from basic to clinical research. Pediatr Surg Int 2023; 39:207. [PMID: 37249714 DOI: 10.1007/s00383-023-05489-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
Biliary atresia (BA) is a severe cholangiopathy in infants. It is characterized by inflammatory fibro-obliteration of the intra- and extrahepatic bile ducts. Although the restoration of bile flow can be successful after Kasai operation, the rapid progression of liver fibrosis can continue, leading to cirrhosis. It is believed that the progression of liver fibrosis in BA is exacerbated by complicated mechanisms other than the consequence of bile duct obstruction. The fibrogenic cascade in BA liver can be divided into three stages, including liver inflammatory injury, myofibroblast activation, and fibrous scar formation. Recent studies have revealed that the activation of an immune response following bile duct injury plays an important role in promoting the inflammatory process, the releasing of inflammatory cytokines, and the development of fibrogenesis in BA liver. In this article, we summarized the evidence regarding liver inflammatory injury and the possible mechanisms that explain the rapid progression of liver fibrosis in BA.
Collapse
Affiliation(s)
- Sinobol Chusilp
- Division of General and Thoracic Surgery, Translational Medicine Program, University of Toronto, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Felicia Balsamo
- Division of General and Thoracic Surgery, Translational Medicine Program, University of Toronto, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine Program, University of Toronto, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Paisarn Vejchapipat
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine Program, University of Toronto, The Hospital for Sick Children, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
4
|
Trussoni CE, O'Hara SP, LaRusso NF. Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Semin Immunopathol 2022; 44:527-544. [PMID: 35178659 DOI: 10.1007/s00281-022-00909-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
The cholangiopathies are a group of liver diseases that affect cholangiocytes, the epithelial cells that line the bile ducts. Biliary atresia (BA), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are three cholangiopathies with significant immune-mediated pathogenesis where chronic inflammation and fibrosis lead to obliteration of bile ducts and eventual liver cirrhosis. Cellular senescence is a state of cell cycle arrest in which cells become resistant to apoptosis and profusely secrete a bioactive secretome. Recent evidence indicates that cholangiocyte senescence contributes to the pathogenesis of BA, PBC, and PSC. This review explores the role of cholangiocyte senescence in BA, PBC, and PSC, ascertains how cholangiocyte senescence may promote a senescence-associated immunopathology in these cholangiopathies, and provides the rationale for therapeutically targeting senescence as a treatment option for BA, PBC, and PSC.
Collapse
Affiliation(s)
- Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, USA. .,Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN, 55905, USA.
| |
Collapse
|