1
|
Ma J, Wen X, Xu Z, Xia P, Jin Y, Lin J, Qian J. Abnormal regulation of miR-29b-ID1 signaling is involved in the process of decitabine resistance in leukemia cells. Cell Cycle 2023; 22:1215-1231. [PMID: 37032592 PMCID: PMC10193880 DOI: 10.1080/15384101.2023.2200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Decitabine (DAC) is an inhibitor of DNA methyltransferase used to treat leukemia, but primary or secondary resistance to DAC may develop during therapy. The mechanisms related to DAC resistance remain poorly understood. In this study, we find that miR-29b expression was decreased in various leukemia cell lines and AML patients and was associated with poor prognosis. In DAC-sensitive cells, miR-29b inhibited cell growth, promoted apoptosis, and increased the sensitivity to DAC. Similarly, it exerted anti-leukemic effects in DAC-resistant cells. When the miR-29b promoter in DAC-resistant cells was demethylated, its expression was not up-regulated. Furthermore, the expression of ID1, one of the target genes of miR-29b, was down-regulated in miR-29b transfected leukemic cells. ID1 promoted cell growth, inhibited cell apoptosis, and decreased DAC sensitivity in leukemic cells in vitro and in vivo. ID1 was down-regulated in DAC-sensitive cells treated with DAC, while it was up-regulated in DAC-resistant cells. Interestingly, the ID1 promoter region was completely unmethylated in both DAC-resistant cells and sensitive cells before DAC treatment. The growth inhibition, increased DAC sensitivity, and apoptosis induced by miR-29b can be eliminated by increasing ID1 expression. These results suggested that DAC regulates ID1 expression by acting on miR-29b. Abnormal ID1 expression of ID1 that is methylation independent and induced by miR-29b may be involved in the process of leukemia cells acquiring DAC resistance.
Collapse
Affiliation(s)
- Jichun Ma
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiangmei Wen
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zijun Xu
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peihui Xia
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Lei L, Wang Y, Liu R, Feng J, Tang J, Gou J, Guan F, Li X. Transfer of miR-4755-5p through extracellular vesicles and particles induces decitabine resistance in recipient cells by targeting CDKN2B. Mol Carcinog 2023; 62:743-753. [PMID: 36825759 DOI: 10.1002/mc.23521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
Decitabine (5-aza-2-deoxycytidine, DAC), a DNA-hypomethylating agent, has been one of the frontline therapies for clonal hematopoietic stem cell disorders, such as myelodysplastic syndrome and acute myeloid leukemia, but DAC-resistance often occurs and leads to treatment failure. Therefore, elucidating the mechanisms of DAC resistance is important for improving its therapeutic efficacy. The extracellular vesicles and particles (EVPs) have been reported to be involved in mediating drug resistance by transporting diverse bioactive components. In this study, we established the DAC-resistant cell line (KG1a-DAC) from its parental human leukemia-derived cell line KG1a and observed that EVPs released from KG1a-DAC can promote DAC-resistant in KG1a cells. Moreover, treatment with KG1a-DAC EVPs reduced the expression of cyclin-dependent kinase inhibitor 2B (CDKN2B) in KG1a cells. miRNA-Seq analysis revealed that miR-4755-5p is overexpressed in EVPs from KG1a-DAC. Dual-luciferase reporter assay and flow cytometry analysis confirmed that miR-4755-5p rendered KG1a cells resistant to the DAC by targeting CDKN2B gene. Taken together, miR-4755-5p in EVPs released from the DAC-resistant cells plays an essential role in inducing DAC-resistance, and is a potential therapeutic target for suppression of DAC resistance.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, China
| | - Rui Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Jingjing Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Juan Tang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Junjie Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
3
|
Karimi Kelaye S, Najafi F, Kazemi B, Foruzandeh Z, Seif F, Solali S, Alivand MR. The contributing factors of resistance or sensitivity to epigenetic drugs in the treatment of AML. Clin Transl Oncol 2022; 24:1250-1261. [PMID: 35076883 DOI: 10.1007/s12094-022-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Drug resistance is the drug-effectiveness reduction in treatment and is a serious problem in oncology and infections. In oncology, drug resistance is a complicated process resulting from enhancing the function of a pump that transports drugs out of tumor cells, or acquiring mutations in drug target. Surprisingly, most drugs are very effective in the early stages, but the response to the drug wears off over time and resistance eventually develops. Drug resistance is caused by genetic and epigenetic changes that affect cancer cells and the tumor environment. The study of inherited changes in the phenotype without changes in the DNA sequence is called epigenetics. Because of reversible changes in epigenetics, they are an attractive target for therapy. Some of these epigenetic drugs are effective in treating cancers like acute myeloid leukemia (AML), which is characterized by the accumulation and proliferation of immature hematopoietic cells in the blood and bone marrow. In this article, we outlined the various contributing factors involved in resistance or sensitivity to epigenetic drugs in the treatment of AML.
Collapse
Affiliation(s)
- Shohre Karimi Kelaye
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Najafi
- Division of Hematology and Blood Banking, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Kazemi
- Division of Hematology and Blood Banking, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Foruzandeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad-Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|