1
|
Wang Y, Banga L, Ebrahim AS, Carion TW, Sosne G, Berger EA. Activation of pro-resolving pathways mediate the therapeutic effects of thymosin beta-4 during Pseudomonas aeruginosa-induced keratitis. Front Immunol 2024; 15:1458684. [PMID: 39380984 PMCID: PMC11458456 DOI: 10.3389/fimmu.2024.1458684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Current treatments for bacterial keratitis fail to address the sight-threatening inflammatory host response. Our recent work elucidating the therapeutic mechanisms of adjunctive thymosin beta-4 (Tβ4) in resolving inflammation and infection in bacterial keratitis revealed modulation of effector cell function and enhanced bacterial killing. The current study builds upon the observed effects on effector cell function by investigating the impact of Tβ4 on specialized pro-resolving lipid mediator (SPM) pathways as they play a significant role in inflammation resolution. Methods Using a well-established in vivo model of Pseudomonas aeruginosa-induced bacterial keratitis, we assessed key enzymes (5-LOX and 12/15-LOX) involved in SPM pathway activation, SPM end products (lipoxins, resolvins), and receptor levels for these mediators. In vitro validation using LPS-stimulated murine monocyte/MΦ-like RAW 264.7 cells and siRNA to inhibit Tβ4 and LOX enzymes was carried out to complement our in vivo findings. Results Findings from our in vivo and in vitro investigations demonstrated that adjunctive Tβ4 treatment significantly influences enzymes and receptors involved in SPM pathways. Further, Tβ4 alone enhances the generation of SPM end products in the cornea. Our in vitro assessments confirmed that Tβ4-enhanced phagocytosis is directly mediated by SPM pathway activation. Whereas Tβ4-enhanced efferocytosis appeared to be indirect. Conclusion Collectively, these findings suggest that the therapeutic effect of Tβ4 resolves inflammation through the activation of SPM pathways, thereby enhancing host defense and tissue repair. Our research contributes to understanding the potential mechanisms behind Tβ4 immunoregulatory function, pointing to its promising ability as a comprehensive adjunctive treatment for bacterial keratitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth A. Berger
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Chen Q, Wang L, Wei Y, Xu X, Guo X, Liang Q. Ferroptosis as a Potential Therapeutic Target for Reducing Inflammation and Corneal Scarring in Bacterial Keratitis. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 38381413 PMCID: PMC10893897 DOI: 10.1167/iovs.65.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Purpose Bacterial keratitis (BK) is a serious ocular infection that can cause severe inflammation and corneal scarring, leading to vision loss. In this study, we aimed to investigate the involvement of ferroptosis in the pathogenesis of BK. Methods Transcriptome analysis was performed to evaluate ferroptosis-related gene expression in human BK corneas. Subsequently, the ferroptosis in mouse models of Pseudomonas aeruginosa keratitis and corneal stromal stem cells (CSSCs) were validated. The mice were treated with levofloxacin (LEV) or levofloxacin combined with ferrostatin-1 (LEV+Fer-1). CSSCs were treated with lipopolysaccharide (LPS) or LPS combined Fer-1. Inflammatory cytokines, α-SMA, and ferroptosis-related regulators were evaluated by RT-qPCR, immunostaining, and Western blot. Iron and reactive oxygen species (ROS) were measured. Results Transcriptome analysis revealed significant alterations in ferroptosis-related genes in human BK corneas. In the BK mouse models, the group treated with LEV+Fer-1 exhibited reduced inflammatory cytokines (MPO, TNF-α, and IFN-γ), decreased corneal scarring and α-SMA expression, and lower Fe3+ compared to the BK and LEV groups. Notably, the LEV+Fer-1 group showed elevated GPX4 and SLC7A11 in contrast to the BK and LEV group. In vitro, Fer-1 treatment effectively restored the alterations of ROS, Fe2+, GPX4, and SLC7A11 induced by LPS in CSSCs. Conclusions Ferroptosis plays a crucial role in the pathogenesis of BK. The inhibition of ferroptosis holds promise for mitigating inflammation, reducing corneal scarring, and ultimately enhancing the prognosis of BK. Consequently, this study provides a potential target for innovative therapeutic strategies for BK, which holds immense potential to transform the treatment of BK.
Collapse
Affiliation(s)
- Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Xiaoyan Guo
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| |
Collapse
|
4
|
Wu J, Wang W, Yuan F, Zheng J, Zhang W, Guo H, Wang L, Dai C, Han F, Wu X, Gao J. CXCL16 exacerbates Pseudomonas aeruginosa keratitis by promoting neutrophil activation. Int Immunopharmacol 2024; 127:111375. [PMID: 38154213 DOI: 10.1016/j.intimp.2023.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Pseudomonas aeruginosa (PA) keratitis is a major cause of blindness characterized by corneal inflammation. In a murine model of PA keratitis, we assessed the detrimental effects of CXC chemokine ligand 16 (CXCL16). Quantitative PCR (qPCR), western blotting (WB) and immunofluorescence were used to measure the expression and localization of CXCL16 and its receptor, CXC chemokine receptor 6 (CXCR6). Clinical scores, plate counting, and hematoxylin-eosin staining were used to assess infection severity and its exacerbation by CXCL16. Immunofluorescence, myeloperoxidase assays, and flow cytometry were used to detect neutrophil activity and colocalization with CXCR6. WB and immunofluorescence were used to measure levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). These methods also were used to measure the activation of downstream NF-κB signaling and its positive feedback on CXCL16 expression. ELISA, flow cytometry, and qPCR were used to measure the expression of CXCL2 and T helper 17 (Th17) cell-related genes. CXCL16 and CXCR6 expression was increased in infected corneas. Topical application of CXCL16 exacerbated keratitis by increasing corneal bacterial load and promoting neutrophil infiltration, whereas neutralizing antibody against CXCL16 had the opposite effect. CXCL16 also increased ROS and MMP levels. This neutrophil activation may be caused by its positive feedback with the NF-κB pathway and the upregulation of CXCL2 and Th17 cell related-genes. These data suggest that CXCL16 is an attractive therapeutic target for PA keratitis.
Collapse
Affiliation(s)
- Jiayin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Ophthalmology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China
| | - Wentao Wang
- Department of Surgery, Liaocheng Tumor Hospital, Liaocheng, Shandong 252000, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China
| | - Weihua Zhang
- Department of Ophthalmology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Leyi Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Chenyang Dai
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jianlu Gao
- Department of Ophthalmology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
5
|
Ebrahim AS, Carion TW, Ebrahim T, Win J, Kani H, Wang Y, Stambersky A, Ibrahim AS, Sosne G, Berger EA. A Novel Combination Therapy Tβ4/VIP Protects against Hyperglycemia-Induced Changes in Human Corneal Epithelial Cells. BIOSENSORS 2023; 13:974. [PMID: 37998149 PMCID: PMC10669755 DOI: 10.3390/bios13110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Despite the prevalence of diabetic retinopathy, the majority of adult diabetic patients develop visually debilitating corneal complications, including impaired wound healing. Unfortunately, there is limited treatment for diabetes-induced corneal damage. The current project investigates a novel, peptide-based combination therapy, thymosin beta-4 and vasoactive intestinal peptide (Tβ4/VIP), against high-glucose-induced damage to the corneal epithelium. Electric cell-substrate impedance sensing (ECIS) was used for real-time monitoring of barrier function and wound healing of human corneal epithelial cells maintained in either normal glucose (5 mM) or high glucose (25 mM) ± Tβ4 (0.1%) and VIP (5 nM). Barrier integrity was assessed by resistance, impedance, and capacitance measurements. For the wound healing assay, cell migration was also monitored. Corneal epithelial tight junction proteins (ZO-1, ZO-2, occludin, and claudin-1) were assessed to confirm our findings. Barrier integrity and wound healing were significantly impaired under high-glucose conditions. However, barrier function and cell migration significantly improved with Tβ4/VIP treatment. These findings were supported by high-glucose-induced downregulation of tight junction proteins that were effectively maintained similar to normal levels when treated with Tβ4/VIP. These results strongly support the premise that Tβ4 and VIP work synergistically to protect corneal epithelial cells against hyperglycemia-induced damage. In addition, this work highlights the potential for significant translational impact regarding the treatment of diabetic patients and associated complications of the cornea.
Collapse
Affiliation(s)
- Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.S.E.); (T.W.C.); (T.E.); (J.W.); (Y.W.); (A.S.); (A.S.I.); (G.S.)
| | - Thomas W. Carion
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.S.E.); (T.W.C.); (T.E.); (J.W.); (Y.W.); (A.S.); (A.S.I.); (G.S.)
| | - Thanzeela Ebrahim
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.S.E.); (T.W.C.); (T.E.); (J.W.); (Y.W.); (A.S.); (A.S.I.); (G.S.)
| | - Jeff Win
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.S.E.); (T.W.C.); (T.E.); (J.W.); (Y.W.); (A.S.); (A.S.I.); (G.S.)
| | - Hussein Kani
- Department of Health Sciences, University of Central Florida College of Health Professions and Sciences, Orlando, FL 32816, USA;
| | - Yuxin Wang
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.S.E.); (T.W.C.); (T.E.); (J.W.); (Y.W.); (A.S.); (A.S.I.); (G.S.)
| | - Ashten Stambersky
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.S.E.); (T.W.C.); (T.E.); (J.W.); (Y.W.); (A.S.); (A.S.I.); (G.S.)
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.S.E.); (T.W.C.); (T.E.); (J.W.); (Y.W.); (A.S.); (A.S.I.); (G.S.)
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Gabriel Sosne
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.S.E.); (T.W.C.); (T.E.); (J.W.); (Y.W.); (A.S.); (A.S.I.); (G.S.)
| | - Elizabeth A. Berger
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; (A.S.E.); (T.W.C.); (T.E.); (J.W.); (Y.W.); (A.S.); (A.S.I.); (G.S.)
| |
Collapse
|
6
|
Zhao X, Li N, Yang N, Mi B, Dang W, Sun D, Ma S, Nian H, Wei R. Thymosin β4 Alleviates Autoimmune Dacryoadenitis via Suppressing Th17 Cell Response. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 37531112 PMCID: PMC10405860 DOI: 10.1167/iovs.64.11.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Purpose We investigated the therapeutic effect of recombinant thymosin β4 (rTβ4) on rabbit autoimmune dacryoadenitis, an animal model of SS dry eye, and explore its mechanisms. Methods Rabbits were treated topically with rTβ4 or PBS solution after disease onset for 28 days, and clinical scores were determined by assessing tear secretion, break-up time, fluorescein, hematoxylin and eosin staining, and periodic acid-Schiff. The expression of inflammatory mediators in the lacrimal glands were measured by real-time PCR. The expression of T helper 17 (Th17) cell-related transcription factors and cytokines were detected by real-time PCR and Western blotting. The molecular mechanism underlying the effects of rTβ4 on Th17 cell responses was investigated by Western blotting. Results Topical administration of rTβ4 after disease onset efficiently ameliorated the ocular surface inflammation and relieved the clinical symptoms. Further analysis revealed that rTβ4 treatment significantly inhibited the expression of Th17-related genes (RORC, IL-17A, IL-17F, IL-1R1, IL-23R, and granulocyte-macrophage colony-stimulating factor) and IL-17 protein in lacrimal glands, and meanwhile decreased the inflammatory mediators expression. Mechanistically, we demonstrated that rTβ4 repressed the phosphorylation of signal transducer and activator of transcription 3 (STAT3) both in vivo and in vitro. Activation of the STAT3 signal pathway by Colivelin partly reversed the suppressive effects of rTβ4 on IL-17 expression in vitro. Conclusions rTβ4 could alleviate ongoing autoimmune dacryoadenitis in rabbits, probably by suppressing Th17 response via partly affecting the STAT3 pathway. These data may provide a new insight into the therapeutic effect and mechanism of rTβ4 in dry eye associated with Sjögren's syndrome.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ning Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Baoyue Mi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Weiyu Dang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, United States
| | - Shanshan Ma
- Beijing Northland Biotech. Co., Ltd., Beijing, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
7
|
Kapoor D, Shukla D. Neutrophil Extracellular Traps and Their Possible Implications in Ocular Herpes Infection. Pathogens 2023; 12:209. [PMID: 36839481 PMCID: PMC9958879 DOI: 10.3390/pathogens12020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released from neutrophils. NETs predominantly contain cell-free deoxyribonucleic acid (DNA) decorated with histones and neutrophil granule proteins. Numerous extrinsic and intrinsic stimuli can induce the formation of NETs such as pathogens, cytokines, immune complexes, microcrystals, antibodies, and other physiological stimuli. The mechanism of NETosis induction can either be ROS-dependent or independent based on the catalase producing activity of the pathogen. NADPH is the source of ROS production, which in turn depends on the upregulation of Ca2+ production in the cytoplasm. ROS-independent induction of NETosis is regulated through toll-like receptors (TLRs). Besides capturing and eliminating pathogens, NETs also aggravate the inflammatory response and thus act as a double-edged sword. Currently, there are growing reports of NETosis induction during bacterial and fungal ocular infections leading to different pathologies, but there is no direct report suggesting its role during herpes simplex virus (HSV) infection. There are innumerable independent reports showing that the major effectors of NETosis are also directly affected by HSV infection, and thus, there is a strong possibility that HSV interacts with these facilitators that can either result in virally mediated modulation of NETosis or NETosis-mediated suppression of ocular HSV infection. This review focuses on the mechanism of NETs formation during different ocular pathologies, with its prime focus on highlighting their potential implications during HSV ocular infections and acting as prospective targets for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| |
Collapse
|