1
|
Jiao J, Curley M, Graca FA, Robles-Murguia M, Shirinifard A, Finkelstein D, Xu B, Fan Y, Demontis F. Modulation of protease expression by the transcription factor Ptx1/PITX regulates protein quality control during aging. Cell Rep 2023; 42:111970. [PMID: 36640359 PMCID: PMC9933915 DOI: 10.1016/j.celrep.2022.111970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Protein quality control is important for healthy aging and is dysregulated in age-related diseases. The autophagy-lysosome and ubiquitin-proteasome are key for proteostasis, but it remains largely unknown whether other proteolytic systems also contribute to maintain proteostasis during aging. Here, we find that expression of proteolytic enzymes (proteases/peptidases) distinct from the autophagy-lysosome and ubiquitin-proteasome systems declines during skeletal muscle aging in Drosophila. Age-dependent protease downregulation undermines proteostasis, as demonstrated by the increase in detergent-insoluble poly-ubiquitinated proteins and pathogenic huntingtin-polyQ levels in response to protease knockdown. Computational analyses identify the transcription factor Ptx1 (homologous to human PITX1/2/3) as a regulator of protease expression. Consistent with this model, Ptx1 protein levels increase with aging, and Ptx1 RNAi counteracts the age-associated downregulation of protease expression. Moreover, Ptx1 RNAi improves muscle protein quality control in a protease-dependent manner and extends lifespan. These findings indicate that proteases and their transcriptional modulator Ptx1 ensure proteostasis during aging.
Collapse
Affiliation(s)
- Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Flavia A. Graca
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Wang Z, Li C. Xenophagy in innate immunity: A battle between host and pathogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103693. [PMID: 32243873 DOI: 10.1016/j.dci.2020.103693] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a fundamental bulk intracellular degradation and recycling process that directly eliminates intracellular microorganisms through "xenophagy" in various types of cells, especially in macrophages. Meanwhile, bacteria have evolved strategies and cellular self-defense mechanisms to prevent autophagosomal degradation and even attack the immune system of host. The lack of knowledge about the roles of autophagy in innate immunity severely limits our understanding of host defensive system and the development of farmed industry consisting of aquaculture. Increasing evidence in recent decades has shown the importance of autophagy. This review focuses on the triggering of xenophagy, targeting of invading pathogens to autophagosomes and elimination in the autophagolysosomes during pathogen infection. How the pathogen can escape from the xenophagy pathway was also discussed. Overall, we aim to reduce diseases and improve industrial production in aquaculture by providing theoretical and technical guidance on xenophagy.
Collapse
Affiliation(s)
- Zhenhui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
4
|
Bader CA, Shandala T, Carter EA, Ivask A, Guinan T, Hickey SM, Werrett MV, Wright PJ, Simpson PV, Stagni S, Voelcker NH, Lay PA, Massi M, Plush SE, Brooks DA. A Molecular Probe for the Detection of Polar Lipids in Live Cells. PLoS One 2016; 11:e0161557. [PMID: 27551717 PMCID: PMC4994960 DOI: 10.1371/journal.pone.0161557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/07/2016] [Indexed: 01/08/2023] Open
Abstract
Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular compartments.
Collapse
Affiliation(s)
- Christie A. Bader
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Tetyana Shandala
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth A. Carter
- Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Angela Ivask
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Taryn Guinan
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Shane M. Hickey
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Melissa V. Werrett
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Phillip J. Wright
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Peter V. Simpson
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Bologna, Italy
| | - Nicolas H. Voelcker
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Peter A. Lay
- Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales, Australia
| | - Massimiliano Massi
- Department of Chemistry and Nanochemistry Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Sally E. Plush
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Douglas A. Brooks
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|