1
|
Wiśniewska MM, Kyslík J, Alama-Bermejo G, Lövy A, Kolísko M, Holzer AS, Kosakyan A. Comparative transcriptomics reveal stage-dependent parasitic adaptations in the myxozoan Sphaerospora molnari. BMC Genomics 2025; 26:103. [PMID: 39901063 DOI: 10.1186/s12864-025-11265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Parasitism as a life strategy has independently evolved multiple times within the eukaryotic tree of life. Each lineage has developed mechanisms to invade hosts, exploit resources, and ensure replication, but our knowledge of survival mechanisms in many parasitic taxa remain extremely limited. One such group is the Myxozoa, which are obligate, dixenous cnidarians. Evidence suggests that myxozoans evolved from free-living ancestors to endoparasites around 600 million years ago and are likely one of the first metazoan parasites on Earth. Some myxozoans pose significant threats to farmed and wild fish populations, negatively impacting aquaculture and fish stocks; one such example is Sphaerospora molnari, which forms spores in the gills of common carp (Cyprinus carpio), disrupting gill epithelia and causing somatic and respiratory failure. Sphaerospora molnari undergoes sequential development in different organs of its host, with large numbers of morphologically distinct stages occurring in the blood, liver, and gills of carp. We hypothesize that these parasite life-stages differ in regards to their host exploitation, pathogenicity, and host immune evasion strategies and mechanisms. We performed stage-specific transcriptomic profiling to identify differentially expressed key functional gene groups that relate to these functions and provide a fundamental understanding of the mechanisms S. molnari uses to optimize its parasitic lifestyle. We aimed to identify genes that are likely related to parasite pathogenicity and host cell exploitation mechanisms, and we hypothesize that genes unique to S. molnari might be indicative of evolutionary innovations and specific adaptations to host environments. RESULTS We used parasite isolation protocols and comparative transcriptomics to study early proliferative and spore-forming stages of S. molnari, unveiling variation in gene expression between each stage. We discovered several apparent innovations in the S. molnari transcriptome, including proteins that are likely to function in the uptake of previously unknown key nutrients, immune evasion factors that may contribute to long-term survival in hosts, and proteins that likely improve adhesion to host cells that may have arisen from horizontal gene transfer. Notably, we identified genes that are similar to known virulence factors in other parasitic organisms, particularly blood and intestinal parasites like Plasmodium, Trypanosoma, and Giardia. Many of these genes are absent in published cnidarian and myxozoan datasets and appear to be specific to S. molnari; they may therefore represent potential innovations enabling Sphaerospora to exploit the host's blood system. CONCLUSIONS In order to address the threat posed by myxozoans to both cultured fish species and wild stocks, it is imperative to deepen our understanding of their genetics. Sphaerospora molnari offers an appealing model for stage-specific transcriptomic profiling and for identifying differentially expressed key functional gene groups related to parasite development. We identified genes that are thus far unique to S. molnari, which reveal their evolutionary novelty and likely role as adaptations to specific host niches. In addition, we describe the pathogenicity-associated genetic toolbox of S. molnari and discuss the implications of our discoveries for disease control by shedding light on specific targets for potential intervention strategies.
Collapse
Affiliation(s)
- Monika M Wiśniewska
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Jiří Kyslík
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gema Alama-Bermejo
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Alena Lövy
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- National Biodiversity Future Center (NBFC), Palermo, Italy.
| |
Collapse
|
2
|
Chan JTH, Picard-Sánchez A, Dedić N, Majstorović J, Rebl A, Holzer AS, Korytář T. Immunological memory in a teleost fish: common carp IgM + B cells differentiate into memory and plasma cells. Front Immunol 2024; 15:1493840. [PMID: 39759525 PMCID: PMC11695322 DOI: 10.3389/fimmu.2024.1493840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/20/2024] [Indexed: 01/07/2025] Open
Abstract
From ancient cold-blooded fishes to mammals, all vertebrates are protected by adaptive immunity, and retain immunological memory. Although immunologists can demonstrate these phenomena in all fish, the responding cells remain elusive, without the tools to study them nor markers to define them. Fundamentally, we posited that it is longevity that defines a memory cell, like how it is antibody production that defines a plasma cell. We infected the common carp with Sphaerospora molnari, a cnidarian parasite which causes seasonal outbreaks to which no vaccine is available. B cells proliferated and expressed gene signatures of differentiation. Despite a half-year gap between EdU labeling and sampling, IgM+ B cells retained the thymidine analogue, suggesting that these are at least six-month-old resting memory cells stemming from proliferating precursors. Additionally, we identified a lymphoid organ-resident population of plasma cells by the exceptional levels of IgM they express. Thus, we demonstrate that a teleost fish produces the lymphocytes key to vaccination success and long-term disease protection, supporting the idea that immunological memory is observable and universal across vertebrates.
Collapse
Affiliation(s)
- Justin Tze Ho Chan
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Amparo Picard-Sánchez
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Neira Dedić
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Fish Immunology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jovana Majstorović
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Alexander Rebl
- Working Group Fish Genetics, Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Astrid Sibylle Holzer
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Tomáš Korytář
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Laboratory of Fish Immunology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
3
|
Dobai T, Bartošová-Sojková P. Sphaerospora molnari. Trends Parasitol 2024; 40:352-353. [PMID: 38220474 DOI: 10.1016/j.pt.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Tamás Dobai
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Kyslík J, Born-Torrijos A, Holzer AS, Kosakyan A. RNAi-directed knockdown in the cnidarian fish blood parasite Sphaerospora molnari. Sci Rep 2024; 14:3545. [PMID: 38347054 PMCID: PMC10861503 DOI: 10.1038/s41598-024-54171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
RNA interference (RNAi) is an effective approach to suppress gene expression and monitor gene regulation. Despite its wide application, its use is limited in certain taxonomic groups, including cnidarians. Myxozoans are a unique group of cnidarian parasites that diverged from their free-living ancestors about 600 million years ago, with several species causing acute disease in farmed and wild fish populations. In this pioneering study we successfully applied RNAi in blood stages of the myxozoan Sphaerospora molnari, combining a dsRNA soaking approach, real-time PCR, confocal microscopy, and Western blotting. For proof of concept, we knocked down two unusual actins, one of which is known to play a critical role in S. molnari cell motility. We observed intracellular uptake of dsRNA after 30 min and accumulation in all cells of the typical myxozoan cell-in-cell structure. We successfully knocked down actin in S. molnari in vitro, with transient inhibition for 48 h. We observed the disruption of the cytoskeletal network within the primary cell and loss of the characteristic rotational cell motility. This RNAi workflow could significantly advance functional research within the Myxozoa, offering new prospects for investigating therapeutic targets and facilitating drug discovery against economically important fish parasites.
Collapse
Affiliation(s)
- Jiří Kyslík
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic.
| | - Ana Born-Torrijos
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, PO Box 59, 1790 AB, Texel, The Netherlands
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- Fish Health Division, University of Veterinary Medicine, Vienna, Austria
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
5
|
Kalyuzhny AE. A Never-Ending Journey in Search for Novel Cell Biology Techniques. Cells 2022; 11:1393. [PMID: 35563699 PMCID: PMC9101893 DOI: 10.3390/cells11091393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cell techniques undergo rapid advancement across different areas of biomedical research [...].
Collapse
Affiliation(s)
- Alexander E Kalyuzhny
- Department of Neuroscience, University of Minnesota Twin Cities, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|