1
|
Sessa L, Concilio S, Di Martino M, Romanini D, Busquets X, Piotto S. Bending the rules: Molecular dynamics of hydroxylated sphingolipid membranes with 2-hydroxyoleic acid. Chem Phys Lipids 2025; 268:105475. [PMID: 39947342 DOI: 10.1016/j.chemphyslip.2025.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
In this study, we introduce a novel method for quantifying the mechanical properties of lipid membranes-bending rigidity (κ), Gaussian rigidity (κG), and surface tension (γ) using molecular dynamics (MD) simulations. Our approach is applied to membranes incorporating 2-hydroxyoleic acid (2OHOA), a synthetic oleic acid derivative currently under clinical investigation for its anticancer properties. 2OHOA modifies the plasma membrane composition in cancer cells and activates sphingomyelin synthase 1 (SMS1), an enzyme critical for maintaining sphingolipid levels in the plasma membrane. This research focuses on how the integration of 2OHOA into ceramide and sphingomyelin alters the mechanical and biophysical properties of these membranes. We employed MD simulations to analyze structural parameters such as lipid area, volume, and bilayer thickness. Additionally, by constructing a system of linear equations based on the Helfrich-Seifert model, we estimated the mechanical properties of hydroxylated versus non-hydroxylated membranes. Our findings reveal significant membrane rigidity and curvature changes due to hydroxylation, affecting membrane-protein interactions and cellular processes like vesiculation. This work provides critical insights into the molecular mechanisms by which hydroxylation influences membrane elasticity, with implications for both fundamental biophysics and therapeutic applications in cancer treatment.
Collapse
Affiliation(s)
- Lucia Sessa
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy.
| | - Simona Concilio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy; Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Miriam Di Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Davide Romanini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma 07122, Spain
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy; Bionam Research Centre for Biomaterials, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA 84084, Italy.
| |
Collapse
|
2
|
Rodríguez-Lorca R, Román R, Beteta-Göbel R, Torres M, Lladó V, Escribá PV, Fernández-García P. Targeting the Notch-Furin axis with 2-hydroxyoleic acid: a key mechanism in glioblastoma therapy. Cell Oncol (Dordr) 2025; 48:373-390. [PMID: 39400678 PMCID: PMC11996967 DOI: 10.1007/s13402-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
PURPOSE Glioblastomas (GBMs) are highly treatment-resistant and aggressive brain tumors. 2OHOA, which is currently running a phase IIB/III clinical trial for newly diagnosed GBM patients, was developed in the context of melitherapy. This therapy focuses on the regulation of the membrane's structure and organization with the consequent modulation of certain cell signals to revert the pathological state in several disorders. Notch signaling has been associated with tumorigenesis and cell survival, potentially driving the pathogenesis of GBM. The current study aims to determine whether 2OHOA modulates the Notch pathway as part of its antitumoral mechanism. METHODS 2OHOA's effect was evaluated on different components of the pathway by Western blot, Q-PCR, and confocal microscopy. Notch receptor processing was analyzed by subcellular fractionation and colocalization studies. Furin activity was evaluated under cleavage of its substrate by fluorescence assays and its binding affinity to 2OHOA was determined by surface plasmon resonance. RESULTS We found that 2OHOA inhibits Notch2 and Notch3 signaling by dual mechanism. Notch2 inhibition is unleashed by impairment of its processing through the inactivation of furin activity by physical association. Instead, Notch3 is transcriptionally downregulated leading to a lower activation of the pathway. Moreover, we also found that HES1 overexpression highlighted the relevance of this pathway in the 2OHOA pharmacological efficacy. CONCLUSION These findings report that the inhibition of Notch signaling by 2OHOA plays a role in its anti-tumoral activity, an effect that may be driven through direct inhibition of furin, characterizing a novel target of this bioactive lipid to treat GBM.
Collapse
Affiliation(s)
- Raquel Rodríguez-Lorca
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain.
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain.
| | - Ramón Román
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain
| | - Roberto Beteta-Göbel
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain
| | - Manuel Torres
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain
| | - Victoria Lladó
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain
| | - Pablo V Escribá
- Department of Biology, Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, Palma de Mallorca, 07122, Spain.
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain.
| | - Paula Fernández-García
- R&D Department, Laminar Pharmaceuticals, C/Isaac Newton, Palma de Mallorca, 07121, Spain
| |
Collapse
|
3
|
Lopez J, Lai-Kwon J, Molife R, Welsh L, Tunariu N, Roda D, Fernández-García P, Lladó V, McNicholl AG, Rosselló CA, Taylor RJ, Azaro A, Rodón J, Sludden J, Veal GJ, Plummer R, Urruticoechea A, Lahuerta A, Mujika K, Escribá PV. A Phase 1/2A trial of idroxioleic acid: first-in-class sphingolipid regulator and glioma cell autophagy inducer with antitumor activity in refractory glioma. Br J Cancer 2023; 129:811-818. [PMID: 37488446 PMCID: PMC10449773 DOI: 10.1038/s41416-023-02356-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The first-in-class brain-penetrating synthetic hydroxylated lipid idroxioleic acid (2-OHOA; sodium 2-hydroxyoleate), activates sphingomyelin synthase expression and regulates membrane-lipid composition and mitochondrial energy production, inducing cancer cell autophagy. We report the findings of a multicentric first-in-human Phase 1/2A trial (NCT01792310) of 2-OHOA, identifying the maximum tolerated dose (MTD) and assessing safety and preliminary efficacy. METHODS We performed an open-label, non-randomised trial to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics and anti-tumour activity of daily oral treatment with 2-OHOA monotherapy (BID/TID) in 54 patients with glioma and other advanced solid tumours. A dose-escalation phase using a standard 3 + 3 design was performed to determine safety and tolerability. This was followed by two expansion cohorts at the MTD to determine the recommended Phase-2 dose (RP2D). RESULTS In total, 32 recurrent patients were enrolled in the dose-escalation phase (500-16,000 mg/daily). 2-OHOA was rapidly absorbed with dose-proportional exposure. Treatment was well-tolerated overall, with reversible grade 1-2 nausea, vomiting, and diarrhoea as the most common treatment-related adverse events (AEs). Four patients had gastrointestinal dose-limiting toxicities (DLTs) of nausea, vomiting, diarrhoea (three patients at 16,000 mg and one patient at 12,000 mg), establishing an RP2D at 12,000 mg/daily. Potential activity was seen in patients with recurrent high-grade gliomas (HGG). Of the 21 patients with HGG treated across the dose escalation and expansion, 5 (24%) had the clinical benefit (RANO CR, PR and SD >6 cycles) with one exceptional response lasting >2.5 years. CONCLUSIONS 2-OHOA demonstrated a good safety profile and encouraging activity in this difficult-to-treat malignant brain-tumour patient population, placing it as an ideal potential candidate for the treatment of glioma and other solid tumour malignancies. CLINICAL TRIAL REGISTRATION EudraCT registration number: 2012-001527-13; Clinicaltrials.gov registration number: NCT01792310.
Collapse
Affiliation(s)
- Juanita Lopez
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK.
| | - Julia Lai-Kwon
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK
| | - Rhoda Molife
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK
| | - Liam Welsh
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK
| | - Nina Tunariu
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK
| | - Desamparados Roda
- The Royal Marsden Hospital and the Institute of Cancer Research, Sutton, UK
| | | | | | | | | | | | | | | | | | - Gareth J Veal
- Northern Centre for Cancer Care, Newcastle upon Tyne, UK
| | - Ruth Plummer
- Northern Centre for Cancer Care, Newcastle upon Tyne, UK
| | | | | | - Karmele Mujika
- Gipuzkoa Cancer Unit, OSID-Onkologikoa, San Sebastián, Spain
| | | |
Collapse
|
4
|
Morán-Zendejas R, Rodríguez-Menchaca AA. The anti-tumor drug 2-hydroxyoleic acid regulates the oncogenic potassium channel Kv10.1. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
2-hydroxyoleic acid (2OHOA) is a synthetic fatty acid with antitumor properties that alters membrane composition and structure, which in turn influences the functioning of membrane proteins and cell signaling. In this study, we propose a novel antitumoral mechanism of 2OHOA accomplished through the regulation of Kv10.1 channels. We evaluated the effects of 2OHOA on Kv10.1 channels expressed in HEK-293 cells by using electrophysiological techniques and a cell proliferation assay.
Results
2OHOA increased Kv10.1 channel currents in a voltage-dependent manner, shifted its conductance-voltage relationship towards negative potentials, and accelerated its activation kinetics. Moreover, 2OHOA reduced proliferation of cells that exogenously (HEK-293) and endogenously (MCF-7) expressed Kv10.1 channels. It is worth noting that the antiproliferative effect of 2OHOA was maintained in HEK-293 cells expressing a non-conducting mutant of Kv10.1 channel (Kv10.1-F456A), while it did not affect HEK-293 cells not expressing Kv10.1 channels, suggesting that 2OHOA interferes with a non-conducting function of Kv10.1 channels involved in cell proliferation. Finally, we found that 2OHOA can act synergistically with astemizole, a Kv10.1 channel blocker, to decrease cell proliferation more efficiently.
Conclusion
Our data suggest that 2OHOA decreases cell proliferation, at least in part, by regulating Kv10.1 channels.
Collapse
|