1
|
Wu J, Xu X, Zhang S, Li M, Qiu Y, Lu G, Zheng Z, Huang H. Plastic Events of the Vestibular Nucleus: the Initiation of Central Vestibular Compensation. Mol Neurobiol 2024; 61:9680-9693. [PMID: 38689145 DOI: 10.1007/s12035-024-04208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Vestibular compensation is a physiological response of the vestibular organs within the inner ear. This adaptation manifests during consistent exposure to acceleration or deceleration, with the vestibular organs incrementally adjusting to such changes. The molecular underpinnings of vestibular compensation remain to be fully elucidated, yet emerging studies implicate associations with neuroplasticity and signal transduction pathways. Throughout the compensation process, the vestibular sensory neurons maintain signal transmission to the central equilibrium system, facilitating adaptability through alterations in synaptic transmission and neuronal excitability. Notable molecular candidates implicated in this process include variations in ion channels and neurotransmitter profiles, as well as neuronal and synaptic plasticity, metabolic processes, and electrophysiological modifications. This study consolidates the current understanding of the molecular events in vestibular compensation, augments the existing research landscape, and evaluates contemporary therapeutic strategies. Furthermore, this review posits potential avenues for future research that could enhance our comprehension of vestibular compensation mechanisms.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Minping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
2
|
李 洁, 时 海. [Research advances in the mechanism of vestibular compensation and treatment]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:256-260. [PMID: 38433698 PMCID: PMC11233209 DOI: 10.13201/j.issn.2096-7993.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 03/05/2024]
Abstract
Unlike other sensory systems, since the vestibular system maintains the tension balance of the entire system in a"push-pull" mode, local dysfunction in the system will cause the balance of the entire system to collapse. Unilateral peripheral vestibular dysfunction will cause severe vestibular symptoms, but it can recover spontaneously within a few days to several weeks. This phenomenon is called "vestibular compensation"(VC). Since the peripheral vestibular impact in most cases is irreversible, it is widely believed that the central mechanism plays a key role in the vestibular compensation process. Static symptom is fully compensated within a few weeks, which is in parallel with the restored balance in the resting discharge of the vestibular nucleus on both sides; the incomplete compensation of dynamic deficits takes longer and is achieved mainly through the mechanism of sensory substitution and behavioral substitution. Here we briefly reviewed the mechanism of vestibular compensation and treatment in order to provide an insight into further study and clinical treatment strategies.
Collapse
Affiliation(s)
- 洁 李
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People′s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - 海波 时
- 上海交通大学医学院附属第六人民医院耳鼻咽喉头颈外科(上海,200233)Department of Otorhinolaryngology Head and Neck Surgery, Sixth People′s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
3
|
Bougerolle V, El Khiati R, El Ahmadi A, Tighilet B, Besnard S, Chabbert C. Statistical Associations between Vestibular Pathologies and Hypothyroidism: A Retrospective Study. J Clin Med 2024; 13:1099. [PMID: 38398412 PMCID: PMC10889551 DOI: 10.3390/jcm13041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The association between vestibular pathologies and thyroid hormone disorders has been known for several decades. However, very little information is available on the types of vestibular symptoms that may be affected by altered thyroid hormone levels. The aim of this study was to provide patient data in order to identify statistical associations between vestibular pathologies and thyroid hormone disorders. A retrospective review of the records of 422 patients seen for physiotherapy treatment of vertigo was carried out. Statistical analysis of the data was performed using logistic regression, providing Chi2 and Odds Ratio statistics. Our results show that hypothyroidism statistically significantly increases the expression of certain symptoms, such as vestibular instability and gait disorders, in vestibular pathologies such as Menière's disease or central vertigo. By analyzing patient data, our study provides new evidence of dependence between altered thyroid status and the expression of vestibular pathologies.
Collapse
Affiliation(s)
- Virginie Bougerolle
- Practice of a Physiotherapy and Vestibular Rehabilitation, 59140 Dunkerque, France;
| | - Rhizlane El Khiati
- Research Centre in Psychology and Neurosciences, Aix Marseille University-CNRS, UMR7077, Team VESTIMED, 13331 Marseille, France; (R.E.K.); (A.E.A.); (B.T.)
- Research Group on Vestibular Pathophysiology, Unit GDR2074 CNRS, 13331 Marseille, France;
| | - Abdessadek El Ahmadi
- Research Centre in Psychology and Neurosciences, Aix Marseille University-CNRS, UMR7077, Team VESTIMED, 13331 Marseille, France; (R.E.K.); (A.E.A.); (B.T.)
| | - Brahim Tighilet
- Research Centre in Psychology and Neurosciences, Aix Marseille University-CNRS, UMR7077, Team VESTIMED, 13331 Marseille, France; (R.E.K.); (A.E.A.); (B.T.)
- Research Group on Vestibular Pathophysiology, Unit GDR2074 CNRS, 13331 Marseille, France;
| | - Stéphane Besnard
- Research Group on Vestibular Pathophysiology, Unit GDR2074 CNRS, 13331 Marseille, France;
- UR VERTEX 7480, Université de Caen-Normandie, 14032 Caen, France
| | - Christian Chabbert
- Research Centre in Psychology and Neurosciences, Aix Marseille University-CNRS, UMR7077, Team VESTIMED, 13331 Marseille, France; (R.E.K.); (A.E.A.); (B.T.)
- Research Group on Vestibular Pathophysiology, Unit GDR2074 CNRS, 13331 Marseille, France;
| |
Collapse
|
4
|
Liu D, Wang J, Tian E, Chen J, Kong W, Lu Y, Zhang S. mGluR1/IP3/ERK signaling pathway regulates vestibular compensation in ON UBCs of the cerebellar flocculus. CNS Neurosci Ther 2024; 30:e14419. [PMID: 37622292 PMCID: PMC10848063 DOI: 10.1111/cns.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
AIMS To investigate the role of mGluR1α in cerebellar unipolar brush cells (UBC) in mediating vestibular compensation (VC), using mGluR1α agonist and antagonist to modulate ON UBC neurons, and explore the mGluR1/IP3/extracellular signal-regulated kinase (ERK) signaling pathway. METHODS First, AAV virus that knockdown ON UBC (mGluR1α) were injected into cerebellar UBC by stereotactic, and verified by immunofluorescence and western blot. The effect on VC was evaluated after unilateral labyrinthectomy (UL). Second, saline, (RS)-3,5-dihydroxyphenylglycine (DHPG), and LY367385 were injected into tubes implanted in rats at different time points after UL separately. The effect on ON UBC neuron activity was evaluated by immunofluorescence. Then, Phosphoinositide (PI) and p-ERK1/2 levels of mGluR1α were analyzed by ELISA after UL. The protein levels of p-ERK and total ERK were verified by western blot. In addition, the effect of mGluR1α activation or inhibition on VC-related behavior was observed. RESULTS mGluR1α knockdown induced VC phenotypes. DHPG increased ON UBC activity, while LY367385 reduced ON UBC activity. DHPG group showed an increase in PI and p-ERK1/2 levels, while LY367385 group showed a decrease in PI and p-ERK1/2 levels in cerebellar UBC of rats. The western blot results of p-ERK and total ERK confirm and support the observations. DHPG alleviated VC-related behavior phenotypes, while LY367385 exacerbated vestibular decompensation-like behavior induced by UL. CONCLUSION mGluR1α activity in cerebellar ON UBC is crucial for mediating VC through the mGluR1/IP3/ERK signaling pathway, which affects ON UBC neuron activity and contributes to the pathogenesis of VC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - E. Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yisheng Lu
- Department of Physiology, School of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
- Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Rastoldo G, Tighilet B. The Vestibular Nuclei: A Cerebral Reservoir of Stem Cells Involved in Balance Function in Normal and Pathological Conditions. Int J Mol Sci 2024; 25:1422. [PMID: 38338702 PMCID: PMC10855768 DOI: 10.3390/ijms25031422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we explore the intriguing realm of neurogenesis in the vestibular nuclei-a critical brainstem region governing balance and spatial orientation. We retrace almost 20 years of research into vestibular neurogenesis, from its discovery in the feline model in 2007 to the recent discovery of a vestibular neural stem cell niche. We explore the reasons why neurogenesis is important in the vestibular nuclei and the triggers for activating the vestibular neurogenic niche. We develop the symbiotic relationship between neurogenesis and gliogenesis to promote vestibular compensation. Finally, we examine the potential impact of reactive neurogenesis on vestibular compensation, highlighting its role in restoring balance through various mechanisms.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
6
|
Tighilet B, Trico J, Marouane E, Zwergal A, Chabbert C. Histaminergic System and Vestibular Function in Normal and Pathological Conditions. Curr Neuropharmacol 2024; 22:1826-1845. [PMID: 38504566 PMCID: PMC11284731 DOI: 10.2174/1570159x22666240319123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 03/21/2024] Open
Abstract
Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Jessica Trico
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Andreas Zwergal
- Department of Neurology, LMU University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| |
Collapse
|
7
|
Katzenberger B, Brosch F, Besnard S, Grill E. Chronic Vestibular Hypofunction Is Associated with Impaired Sleep: Results from the DizzyReg Patient Registry. J Clin Med 2023; 12:5903. [PMID: 37762845 PMCID: PMC10531914 DOI: 10.3390/jcm12185903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Temporary or permanent vestibular hypofunction has been hypothesized to affect circadian rhythm, sleep, and thermoregulation. Chronic or long-term vestibular disorders such as unilateral vestibular hypofunction may have an even greater negative impact on sleep quality than acute vestibular problems. This study examines self-reported sleep quality, as assessed by the Pittsburgh Sleep Quality Index (PSQI), and its association with vestibular symptom duration in a group of patients with vestibular disorders. We used data from the cross-sectional DizzyReg patient registry of the German Center for Vertigo and Balance Disorders outpatient clinic. Vestibular diagnoses were ascertained based on the International Classification of Vestibular Disorders. A total of 137 patients were included (60% female, mean age 55.4 years, standard deviation, SD, 16.7). The mean PSQI total score was 6.3 (SD = 3.2), with 51% reporting overall poor sleep quality. Patients who had vertigo for two years or longer reported significantly poorer global sleep quality (63% vs. 37%, p = 0.021) and significantly more difficulties with sleep latency (79% vs. 56%, p = 0.013) and sleep efficiency (56% vs. 34%, p = 0.022). The association of poor sleep quality with a longer duration of vertigo remained significant after multivariable adjustment. Further research should investigate the interaction of vestibular disorders, sleep, and their potential mechanisms.
Collapse
Affiliation(s)
- Benedict Katzenberger
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
- Pettenkofer School of Public Health, 81377 Munich, Germany
| | - Fiona Brosch
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
- Pettenkofer School of Public Health, 81377 Munich, Germany
| | - Stéphane Besnard
- Laboratory of Cognitive Neurosciences, UMR7291, Team Pathophysiology and Therapy of Vestibular Disorders, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 13331 Marseille, France
- Research Group on Vestibular Pathophysiology, Centre National de la Recherche Scientifique (CNRS), Unit GDR2074, 13331 Marseille, France
| | - Eva Grill
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
8
|
Rastoldo G, Tighilet B. Thyroid Axis and Vestibular Physiopathology: From Animal Model to Pathology. Int J Mol Sci 2023; 24:9826. [PMID: 37372973 DOI: 10.3390/ijms24129826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A recent work of our group has shown the significant effects of thyroxine treatment on the restoration of postural balance function in a rodent model of acute peripheral vestibulopathy. Based on these findings, we attempt to shed light in this review on the interaction between the hypothalamic-pituitary-thyroid axis and the vestibular system in normal and pathological situations. Pubmed database and relevant websites were searched from inception through to 4 February 2023. All studies relevant to each subsection of this review have been included. After describing the role of thyroid hormones in the development of the inner ear, we investigated the possible link between the thyroid axis and the vestibular system in normal and pathological conditions. The mechanisms and cellular sites of action of thyroid hormones on animal models of vestibulopathy are postulated and therapeutic options are proposed. In view of their pleiotropic action, thyroid hormones represent a target of choice to promote vestibular compensation at different levels. However, very few studies have investigated the relationship between thyroid hormones and the vestibular system. It seems then important to more extensively investigate the link between the endocrine system and the vestibule in order to better understand the vestibular physiopathology and to find new therapeutic leads.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
9
|
Liu D, Wang J, Zhou L, Tian E, Chen J, Kong W, Lu Y, Zhang S. Differential Modulation of Cerebellar Flocculus Unipolar Brush Cells during Vestibular Compensation. Biomedicines 2023; 11:biomedicines11051298. [PMID: 37238967 DOI: 10.3390/biomedicines11051298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Vestibular compensation is a natural behavioral recovery process following unilateral vestibular injury. Understanding the mechanism can considerably enhance vestibular disorder therapy and advance the adult central nervous system functional plasticity study after injury. The cerebellum, particularly the flocculonodular lobe, tightly modulates the vestibular nucleus, the center for vestibular compensation; however, it is still unclear if the flocculus on both sides is involved in vestibular compensation. Here we report that the unipolar brush cells (UBCs) in the flocculus are modulated by unilateral labyrinthectomy (UL). UBCs are excitatory interneurons targeting granule cells to provide feedforward innervation to the Purkinje cells, the primary output neurons in the cerebellum. According to the upregulated or downregulated response to the mossy fiber glutamatergic input, UBC can be classified into ON and OFF forms of UBCs. Furthermore, we discovered that the expression of marker genes of ON and OFF UBCs, mGluR1α and calretinin, was increased and decreased, respectively, only in ipsilateral flocculus 4-8 h after UL. According to further immunostaining studies, the number of ON and OFF UBCs was not altered during UL, demonstrating that the shift in marker gene expression level in the flocculus was not caused by the transformation of cell types between UBCs and non-UBCs. These findings imply the importance of ipsilateral flocculus UBCs in the acute response of UL, and ON and OFF UBCs may be involved in vestibular compensation in opposite directions.
Collapse
Affiliation(s)
- Dan Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Deng Y, Han Y, Gao S, Dong W, Yu Y. The Physiological Functions and Polymorphisms of Type II Deiodinase. Endocrinol Metab (Seoul) 2023; 38:190-202. [PMID: 37150515 PMCID: PMC10164501 DOI: 10.3803/enm.2022.1599] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023] Open
Abstract
Type II deiodinase (DIO2) is thought to provide triiodothyronine (T3) to the nucleus to meet intracellular needs by deiodinating the prohormone thyroxine. DIO2 is expressed widely in many tissues and plays an important role in a variety of physiological processes, such as controlling T3 content in developing tissues (e.g., bone, muscles, and skin) and the adult brain, and regulating adaptive thermogenesis in brown adipose tissue (BAT). However, the identification and cloning of DIO2 have been challenging. In recent years, several clinical investigations have focused on the Thr92Ala polymorphism, which is closely correlated with clinical syndromes such as type 2 diabetes, obesity, hypertension, and osteoarthritis. Thr92Ala-DIO2 was also found to be related to bone and neurodegenerative diseases and tumors. However, relatively few reviews have synthesized research on individual deiodinases, especially DIO2, in the past 5 years. This review summarizes current knowledge regarding the physiological functions of DIO2 in thyroid hormone signaling and adaptive thermogenesis in BAT and the brain, as well as the associations between Thr92Ala-DIO2 and bone and neurodegenerative diseases and tumors. This discussion is expected to provide insights into the physiological functions of DIO2 and the clinical syndromes associated with Thr92Ala-DIO2.
Collapse
Affiliation(s)
- Yan Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Yi Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Sheng Gao
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
El Khiati R, Tighilet B, Besnard S, Chabbert C. Vestibular Disorders and Hormonal Dysregulations: State of the Art and Clinical Perspectives. Cells 2023; 12:cells12040656. [PMID: 36831323 PMCID: PMC9954452 DOI: 10.3390/cells12040656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The interaction between endocrine and vestibular systems remains poorly documented so far, despite numerous observations in humans and animals revealing direct links between the two systems. For example, dizziness or vestibular instabilities often accompany the menstrual cycle and are highly associated with the pre-menopause period, while sex hormones, together with their specific receptors, are expressed at key places of the vestibular sensory network. Similarly, other hormones may be associated with vestibular disorders either as causal/inductive factors or as correlates of the pathology. This review was carried out according to the PRISMA method, covering the last two decades and using the MEDLINE and COCHRANE databases in order to identify studies associating the terms vestibular system and/or vestibular pathologies and hormones. Our literature search identified 646 articles, 67 of which referred directly to vestibular dysfunction associated with hormonal variations. While we noted specific hormonal profiles depending on the pathology considered, very few clinical studies attempted to establish a direct link between the expression of the vestibular syndrome and the level of circulating hormones. This review also proposes different approaches to shed new light on the link between hormones and vestibular disorders, and to improve both the diagnosis and the therapeutic management of dizzy patients.
Collapse
Affiliation(s)
- Rhizlane El Khiati
- Aix Marseille University—Centre National de la Recherche Scientifique (CNRS), Laboratory of Cognitive Neurosciences, UMR7291, Team Pathophysiology and Therapy of Vestibular Disorders, 13331 Marseille, France
- Research Group on Vestibular Pathophysiology, Centre National de la Recherche Scientifique (CNRS), Unit GDR2074, 13331 Marseille, France
| | - Brahim Tighilet
- Aix Marseille University—Centre National de la Recherche Scientifique (CNRS), Laboratory of Cognitive Neurosciences, UMR7291, Team Pathophysiology and Therapy of Vestibular Disorders, 13331 Marseille, France
- Research Group on Vestibular Pathophysiology, Centre National de la Recherche Scientifique (CNRS), Unit GDR2074, 13331 Marseille, France
| | - Stéphane Besnard
- Aix Marseille University—Centre National de la Recherche Scientifique (CNRS), Laboratory of Cognitive Neurosciences, UMR7291, Team Pathophysiology and Therapy of Vestibular Disorders, 13331 Marseille, France
- Research Group on Vestibular Pathophysiology, Centre National de la Recherche Scientifique (CNRS), Unit GDR2074, 13331 Marseille, France
| | - Christian Chabbert
- Aix Marseille University—Centre National de la Recherche Scientifique (CNRS), Laboratory of Cognitive Neurosciences, UMR7291, Team Pathophysiology and Therapy of Vestibular Disorders, 13331 Marseille, France
- Research Group on Vestibular Pathophysiology, Centre National de la Recherche Scientifique (CNRS), Unit GDR2074, 13331 Marseille, France
- Correspondence:
| |
Collapse
|
12
|
Oxytocin Disturbs Vestibular Compensation and Modifies Behavioral Strategies in a Rodent Model of Acute Vestibulopathy. Int J Mol Sci 2022; 23:ijms232315262. [PMID: 36499588 PMCID: PMC9738578 DOI: 10.3390/ijms232315262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Unilateral inner ear injury is followed by behavioral recovery due to central vestibular compensation. The therapeutic effect of oxytocin (OT) on vestibular compensation was investigated by behavioral testing in a rat model of unilateral vestibular neurectomy (UVN). Animals in the oxytocin group (UVN-OT) exhibited delayed vestibular compensation on the qualitative scale of vestibular deficits and aggravated static postural deficits (bearing surface) compared to animals in the NaCl group (UVN-NaCl). Surprisingly, oxytocin-treated animals adopt a different postural strategy than untreated animals. Instead of shifting their weight to the ipsilesional paws (left front and hind paws), they shift their weight to the front paws (right and left) without modification along the lateral axis. Furthermore, some locomotor strategies of the animals to compensate for the vestibular loss are also altered by oxytocin treatment. UVN-OT animals do not induce an increase in the distance traveled, their mean velocity is lower than that in the control group, and the ipsilesional body rotations do not increase from 7 to 30 days after UVN. This study reveals that oxytocin treatment hinders the restoration of some postural and locomotor deficits while improving others following vestibular lesions. The mechanisms of the action of oxytocin that support these behavioral changes remain to be elucidated.
Collapse
|
13
|
Rastoldo G, Watabe I, Lapotre A, Tonetto A, López-Juárez A, Tighilet B. Vestibular Nuclei: A New Neural Stem Cell Niche? Cells 2022; 11:cells11223598. [PMID: 36429025 PMCID: PMC9688605 DOI: 10.3390/cells11223598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
We previously reported adult reactive neurogliogenesis in the deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline and the rodent model. Recently, we demonstrated that UVN induced a significant increase in a population of cells colocalizing the transcription factor sex determining region Y-box 2 (SOX2) and the glial fibrillary acidic protein (GFAP) three days after the lesion in the deafferented medial vestibular nucleus. These two markers expressed on the same cell population could indicate the presence of lesion-reactive multipotent neural stem cells in the vestibular nuclei. The aim of our study was to provide insight into the potential neurogenic niche status of the vestibular nuclei in physiological conditions by using specific markers of stem cells (Nestin, SOX2, GFAP), cell proliferation (BrdU) and neuronal differentiation (NeuN). The present study confirmed the presence of quiescent and activated adult neural stem cells generating some new neurons in the vestibular nuclei of control rats. These unique features provide evidence that the vestibular nuclei represent a novel NSC site for the generation of neurons and/or glia in the adult rodent under physiological conditions.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Isabelle Watabe
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Agnes Lapotre
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Alain Tonetto
- Fédération de Recherche Sciences Chimiques Marseille FR 1739, Pôle PRATIM, 13331 Marseille, France
| | - Alejandra López-Juárez
- Department of Chemical, Electronic and Biomedical Engineering, Division of Sciences and Engineering, University of Guanajuato, Guanajuato 38116, Mexico
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Physiopathologie Vestibulaire-Unité GDR2074 CNRS, 13331 Marseille, France
- Correspondence: ; Tel.: +33-413550881; Fax: +33-413550869
| |
Collapse
|
14
|
Vaz A, Ribeiro I, Pinto L. Frontiers in Neurogenesis. Cells 2022; 11:cells11223567. [PMID: 36428996 PMCID: PMC9688671 DOI: 10.3390/cells11223567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most intriguing dogmas in neurosciences-the empirical lack of brain neuronal regeneration in adulthood onwards to late life-began to be debunked initially by research groups focused on understanding postnatal (early days/weeks of murine and guinea pigs) neurodevelopmental and neuroplastic events [...].
Collapse
Affiliation(s)
- Andreia Vaz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Bn’ML, Behavioral and Molecular Lab, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Inês Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Bn’ML, Behavioral and Molecular Lab, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
15
|
Microglial Dynamics Modulate Vestibular Compensation in a Rodent Model of Vestibulopathy and Condition the Expression of Plasticity Mechanisms in the Deafferented Vestibular Nuclei. Cells 2022; 11:cells11172693. [PMID: 36078101 PMCID: PMC9454928 DOI: 10.3390/cells11172693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Unilateral vestibular loss (UVL) induces a vestibular syndrome composed of posturo-locomotor, oculomotor, vegetative, and perceptivo-cognitive symptoms. With time, these functional deficits progressively disappear due to a phenomenon called vestibular compensation, known to be supported by the expression in the deafferented vestibular nuclei (VNs) of various adaptative plasticity mechanisms. UVL is known to induce a neuroinflammatory response within the VNs, thought to be caused by the structural alteration of primary vestibular afferents. The acute inflammatory response, expressed in the deafferented VNs was recently proven to be crucial for the expression of the endogenous plasticity supporting functional recovery. Neuroinflammation is supported by reactive microglial cells, known to have various phenotypes with adverse effects on brain tissue. Here, we used markers of pro-inflammatory and anti-inflammatory phenotypes of reactive microglia to study microglial dynamics following a unilateral vestibular neurectomy (UVN) in the adult rat. In addition, to highlight the role of acute inflammation in vestibular compensation and its underlying mechanisms, we enhanced the inflammatory state of the deafferented VNs using systemic injections of lipopolysaccharide (LPS) during the acute phase after a UVN. We observed that the UVN induced the expression of both M1 proinflammatory and M2 anti-inflammatory microglial phenotypes in the deafferented VNs. The acute LPS treatment exacerbated the inflammatory reaction and increased the M1 phenotype while decreasing M2 expression. These effects were associated with impaired postlesional plasticity in the deafferented VNs and exacerbated functional deficits. These results highlight the importance of a homeostatic inflammatory level in the expression of the adaptative plasticity mechanisms underlying vestibular compensation. Understanding the rules that govern neuroinflammation would provide therapeutic leads in neuropathologies associated with these processes.
Collapse
|
16
|
Bringuier CM, Hatat B, Boularand R, Chabbert C, Tighilet B. Characterization of Thyroid Hormones Antivertigo Effects in a Rat Model of Excitotoxically-Induced Vestibulopathy. Front Neurol 2022; 13:877319. [PMID: 35693004 PMCID: PMC9175002 DOI: 10.3389/fneur.2022.877319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
Abstract
Impaired vestibular function induces disabling symptoms such as postural imbalance, impaired locomotion, vestibulo-ocular reflex alteration, impaired cognitive functions such as spatial disorientation, and vegetative deficits. These symptoms show up in sudden attacks in patients with Ménière or neuritis and may lead to emergency hospitalizations. To date, however, there is no curative solution to these pathologies and the effectiveness of treatments used to reduce symptoms in the management of patients is discussed. Thus, elucidating the biological mechanisms correlated to the expression kinetics of the vestibular syndrome is useful for the development of potential therapeutic candidates with a view to relieving patients and limiting emergency hospitalizations. Recently, a robust antivertigo effect of thyroxine (T4) was demonstrated in a rodent model of impaired vestibular function induced by unilateral surgical section of the vestibular nerve. The aim of the present study was to assess thyroid hormones L-T4 and triiodothyronine (T3) as well as the bioactive thyroid hormone metabolite TRIAC on a rodent model of acute unilateral vestibulopathy more representative of clinical vestibular pathology. To this end, a partial and transient unilateral suppression of peripheral vestibular inputs was induced by an excitotoxic lesion caused by transtympanic injection of kainic acid (TTK) into the inner ear of adult rats. Vestibular syndrome and functional recovery were studied by semi-quantitative and quantitative assessments of relevant posturo-locomotor parameters. In contrast to the effect previously demonstrated in the complete and irreversible vestibular injury model, administration of thyroxine in the TTK rodent model did not display significant antivertigo effect. However, it is noteworthy that administration of thyroxine showed trends to prevent posturo-locomotor alterations. Furthermore, the results of the current study suggested that a single dose of thyroxine is sufficient to induce the same effects on vestibular syndrome observed with sub-chronic administration, and that reducing the T4 dose may more efficiently prevent the appearance of vestibular deficits induced by the excitotoxic type lesion. Finally, comparison of the antivertigo effect of T4 in different vestibulopathy models enables us to determine the therapeutic indication in which thyroxine could be a potential therapeutic candidate.
Collapse
Affiliation(s)
| | | | | | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
- *Correspondence: Brahim Tighilet
| |
Collapse
|
17
|
Zwergal A, Lindner M, Grosch M, Dieterich M. In vivo neuroplasticity in vestibular animal models. Mol Cell Neurosci 2022; 120:103721. [PMID: 35338004 DOI: 10.1016/j.mcn.2022.103721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
An acute unilateral vestibulopathy leads to symptoms of vestibular tone imbalance, which gradually decrease over days to weeks due to central vestibular compensation. Animal models of acute peripheral vestibular lesions are optimally suited to investigate the mechanisms underlying this lesion-induced adaptive neuroplasticity. Previous studies applied ex vivo histochemical techniques or local in vivo electrophysiological recordings mostly in the vestibular nucleus complex to delineate the mechanisms involved. Recently, the use of imaging methods, such as positron emission tomography (PET) or magnetic resonance imaging (MRI), in vestibular animal models have opened a complementary perspective by depicting whole-brain structure and network changes of neuronal activity over time and in correlation to behaviour. Here, we review recent multimodal imaging studies in vestibular animal models with a focus on PET-based measurements of glucose metabolism, glial activation and synaptic plasticity. [18F]-FDG-PET studies indicate dynamic alterations of regional glucose metabolism in brainstem-cerebellar, thalamic, cortical sensory and motor, as well as limbic areas starting early after unilateral labyrinthectomy (UL) in the rat. Sequential whole-brain analysis of the metabolic connectome during vestibular compensation shows a significant increase of connections mostly in the contralesional hemisphere after UL, which reaches a maximum at day 3 and thereby parallels the course of vestibular recovery. Glial activation in the ipsilesional vestibular nerve and nucleus peak between days 7 and 15 after UL. Synaptic density in brainstem-cerebellar circuits decreases until 8 weeks after UL, while it increases in frontal, motor and sensory cortical areas. We finally report how pharmacological compounds modulate the functional and structural plasticity mechanisms during vestibular compensation.
Collapse
Affiliation(s)
- Andreas Zwergal
- Department of Neurology, University Hospital, LMU Munich, Germany; German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Germany.
| | - Magdalena Lindner
- German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Germany; Department of Nuclear Medicine, LMU Munich, Germany
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, University Hospital, LMU Munich, Germany; German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Germany; Munich Cluster of Systems Neurology, SyNergy, Munich, Germany
| |
Collapse
|