1
|
Sallard E, Fischer J, Schroeer K, Dawson LM, Beaude N, Affes A, Ehrke-Schulz E, Zhang W, Westhaus A, Cabanes-Creus M, Lisowski L, Ruszics Z, Ehrhardt A. ADEVO: Proof-of-concept of adenovirus-directed EVOlution by random peptide display on the fiber knob. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200867. [PMID: 39346764 PMCID: PMC11439537 DOI: 10.1016/j.omton.2024.200867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Directed evolution of viral vectors involves the generation of randomized libraries followed by artificial selection of improved variants. Directed evolution only yielded limited results in adenovirus (AdV) engineering until now, mainly due to insufficient complexities of randomized libraries. Meanwhile, clinical applications of AdVs as gene therapy or oncolytic vectors are still hampered by the predetermined tropism of natural types. To overcome this challenge, we hypothesized that randomized peptide insertions on the capsid surface can be incorporated into the AdV bioengineering toolbox for retargeting. Here we developed AdV-directed EVOlution protocols based on fiber knob peptide display. Human AdV-C5-derived libraries were constructed following three distinct protocols and selected on a panel of cancer cell lines, with the goal of identifying variants able to infect and lyse these tumor cells more efficiently. All protocols enabled the construction of high complexity libraries with up to 9.6 × 105 unique variants, an approximate 100-fold improvement compared with previously published AdV libraries. After selection, the most enriched variants, which were robustly selected in various cancer cell lines, did not display enhanced infectivity but rather more efficient replication and cell lysis. Selected inserts also conferred enhanced lysis ability to oncolytic AdVs restricted to telomerase-expressing cell lines.
Collapse
Affiliation(s)
- Erwan Sallard
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Julian Fischer
- Institute of Virology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Katrin Schroeer
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Lisa-Marie Dawson
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Nissai Beaude
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- AgroParisTech, Paris-Saclay University, Palaiseau, France
| | - Arsalene Affes
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- AgroParisTech, Paris-Saclay University, Palaiseau, France
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Australian Genome Therapeutics Centre, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
- Military Institute of Medicine – National Research Institute, Laboratory of Molecular Oncology and Innovative Therapies, 04-141 Warsaw, Poland
| | - Zsolt Ruszics
- Institute of Virology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| |
Collapse
|
2
|
Zheng XY, Lv Y, Xu LY, Zhou DM, Yu L, Zhao ZY. A novel approach for breast cancer treatment: the multifaceted antitumor effects of rMeV-Hu191. Hereditas 2024; 161:36. [PMID: 39342391 PMCID: PMC11439206 DOI: 10.1186/s41065-024-00337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The therapeutic potential of oncolytic measles virotherapy has been demonstrated across various malignancies. However, the effectiveness against human breast cancer (BC) and the underlying mechanisms of the recombinant measles virus vaccine strain Hu191 (rMeV-Hu191) remain unclear. METHODS We utilized a range of methods, including cell viability assay, Western blot, flow cytometry, immunofluorescence, SA-β-gal staining, reverse transcription quantitative real-time PCR, transcriptome sequencing, BC xenograft mouse models, and immunohistochemistry to evaluate the antitumor efficacy of rMeV-Hu191 against BC and elucidate the underlying mechanism. Additionally, we employed transcriptomics and gene set enrichment analysis to analyze the lipid metabolism status of BC cells following rMeV-Hu191 infection. RESULTS Our study revealed the multifaceted antitumor effects of rMeV-Hu191 against BC. rMeV-Hu191 induced apoptosis, inhibited proliferation, and promoted senescence in BC cells. Furthermore, rMeV-Hu191 was associated with changes in oxidative stress and lipid homeostasis in infected BC cells. In vivo, studies using a BC xenograft mouse model confirmed a significant reduction in tumor growth following local injection of rMeV-Hu191. CONCLUSIONS The findings highlight the potential of rMeV-Hu191 as a promising treatment for BC and provide valuable insights into the mechanisms underlying its oncolytic effect.
Collapse
Affiliation(s)
- Xiao-Yu Zheng
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yao Lv
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ling-Yan Xu
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Dong-Ming Zhou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zheng-Yan Zhao
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
- , No. 3333 Binsheng Road, Hangzhou, Zhejiang Province, 310052, China.
| |
Collapse
|
3
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
4
|
Sallard E, Schulte L, van den Boom A, Klimovitskii A, Knierer J, Hagedorn C, Knocks M, Zhang W, Kreppel F, Ehrhardt A, Ehrke-Schulz E. Development of oncolytic and gene therapy vectors based on adenovirus serotype 4 as an alternative to adenovirus serotype 5. J Gene Med 2024; 26:e3576. [PMID: 37580111 DOI: 10.1002/jgm.3576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Adenoviral vectors are among the most frequently used vectors for gene therapy and cancer treatment. Most vectors are derived from human adenovirus (Ad) serotype 5 despite limited applicability caused by pre-existing immunity and unfavorable liver tropism, whereas the other more than 100 known human serotypes remain largely unused. Here, we screened a library of human Ad types and identified Ad4 as a promising candidate vector. METHODS Reporter-gene-expressing viruses representative of the natural human Ad diversity were used to transduce an array of muscle cell lines and two- or three-dimensional tumor cultures. The time-course of transgene expression was monitored by fluorescence or luminescence measurements. To generate replication-deficient Ad4 vector genomes, successive homologous recombination was applied. RESULTS Ad4, 17 and 50 transduced human cardiomyocytes more efficiently than Ad5, whereas Ad37 was found to be superior in rhabdomyocytes. Despite its moderate transduction efficiency, Ad4 showed efficient and long-lasting gene expression in papillomavirus (HPV) positive tumor organoids. Therefore, we aimed to harness the potential of Ad4 for improved muscle transduction or oncolytic virotherapy of HPV-positive tumors. We deleted the E1 and E3 transcription units to produce first generation Ad vectors for gene therapy. The E1- and E1/E3-deleted vectors were replication-competent in HEK293 cells stably expressing E1 but not in the other cell lines tested. Furthermore, we show that the Ad5 E1 transcription unit can complement the replication of E1-deleted Ad4 vectors. CONCLUSIONS Our Ad4-based gene therapy vector platform contributes to the development of improved Ad vectors based on non-canonical serotypes for a broad range of applications.
Collapse
Affiliation(s)
- Erwan Sallard
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Lukas Schulte
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Alexander van den Boom
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Alexander Klimovitskii
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Julius Knierer
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Claudia Hagedorn
- Institute for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Maximilian Knocks
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Florian Kreppel
- Institute for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
5
|
Kases K, Schubert E, Hajikhezri Z, Larsson M, Devi P, Darweesh M, Andersson L, Akusjärvi G, Punga T, Younis S. The RNA-binding protein ZC3H11A interacts with the nuclear poly(A)-binding protein PABPN1 and alters polyadenylation of viral transcripts. J Biol Chem 2023; 299:104959. [PMID: 37356722 PMCID: PMC10371797 DOI: 10.1016/j.jbc.2023.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023] Open
Abstract
Nuclear mRNA metabolism is regulated by multiple proteins, which either directly bind to RNA or form multiprotein complexes. The RNA-binding protein ZC3H11A is involved in nuclear mRNA export, NF-κB signaling, and is essential during mouse embryo development. Furthermore, previous studies have shown that ZC3H11A is important for nuclear-replicating viruses. However, detailed biochemical characterization of the ZC3H11A protein has been lacking. In this study, we established the ZC3H11A protein interactome in human and mouse cells. We demonstrate that the nuclear poly(A)-binding protein PABPN1 interacts specifically with the ZC3H11A protein and controls ZC3H11A localization into nuclear speckles. We report that ZC3H11A specifically interacts with the human adenovirus type 5 (HAdV-5) capsid mRNA in a PABPN1-dependent manner. Notably, ZC3H11A uses the same zinc finger motifs to interact with PABPN1 and viral mRNA. Further, we demonstrate that the lack of ZC3H11A alters the polyadenylation of HAdV-5 capsid mRNA. Taken together, our results suggest that the ZC3H11A protein may act as a novel regulator of polyadenylation of nuclear mRNA.
Collapse
Affiliation(s)
- Katharina Kases
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erik Schubert
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Zamaneh Hajikhezri
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Priya Devi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Microbiology and Immunology, Al-Azhr University, Assiut, Egypt
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Shady Younis
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Division of Immunology and Rheumatology, Stanford University, Stanford, California, USA.
| |
Collapse
|
6
|
Zhang J, Zhu Y, Zhou Y, Gao F, Qiu X, Li J, Yuan H, Jin W, Lin W. Pediatric adenovirus pneumonia: clinical practice and current treatment. Front Med (Lausanne) 2023; 10:1207568. [PMID: 37476615 PMCID: PMC10354292 DOI: 10.3389/fmed.2023.1207568] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Adenovirus pneumonia is common in pediatric upper respiratory tract infection, which is comparatively easy to develop into severe cases and has a high mortality rate with many influential sequelae. As for pathogenesis, adenoviruses can directly damage target cells and activate the immune response to varying degrees. Early clinical recognition depends on patients' symptoms and laboratory tests, including those under 2 years old, dyspnea with systemic toxic symptoms, atelectasis or emphysema in CT image, decreased leukocytes, and significantly increased C-reaction protein (CRP) and procalcitonin (PCT), indicating the possibility of severe cases. Until now, there is no specific drug for adenovirus pneumonia, so in clinical practice, current treatment comprises antiviral drugs, respiratory support and bronchoscopy, immunomodulatory therapy, and blood purification. Additionally, post-infectious bronchiolitis obliterans (PIBO), hemophagocytic syndrome, and death should be carefully noted. Independent risk factors associated with the development of PIBO are invasive mechanical ventilation, intravenous steroid use, duration of fever, and male gender. Meanwhile, hypoxemia, hypercapnia, invasive mechanical ventilation, and low serum albumin levels are related to death. Among these, viral load and serological identification are not only "gold standard" for adenovirus pneumonia, but are also related to the severity and prognosis. Here, we discuss the progress of pathogenesis, early recognition, therapy, and risk factors for poor outcomes regarding severe pediatric adenovirus pneumonia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Schröer K, Alshawabkeh M, Schellhorn S, Bronder K, Zhang W, Ehrhardt A. Influence of Heparan Sulfate Proteoglycans and Factor X on species D Human Adenovirus Uptake and Transduction. Viruses 2022; 15:55. [PMID: 36680095 PMCID: PMC9866072 DOI: 10.3390/v15010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
More than 100 human adenovirus (Ad) types were identified, of which species D comprises the largest group. Heparan sulfate proteoglycans (HSPGs) were shown to function as cell surface receptors for cell binding and uptake of some Ads, but a systematic analysis of species D Ads is lacking. Previous research focused on Ad5 and blood coagulation factor X (FX) complexes, which revealed that Ad5 can transduce cells with low expression levels of its main coxsackievirus-adenovirus receptor in the presence of high HSPG expression levels in a FX dependent manner. Based on our reporter gene-tagged Ad-library, we explored for the first time a broad spectrum of species D Ads to study the role of HSPG on their cellular uptake. This study was performed on three Chinese Hamster Ovary (CHO) cell lines with different forms of HSPG (only proteoglycan (745), non-sulfated HSPG (606) or sulfated HSPG (K1)). The effect of Ad:FX complexes on Ad uptake was explored in the presence of physiological levels of FX in blood (6-10 µg/mL). We found that sulfation of HSPG plays an important role in cellular uptake and transduction of FX-bound Ad5 but neither HSPG nor FX influenced uptake of all tested species D Ads. Because FX has no influence on transduction efficiencies of species D Ads and therefore may not bind to them, these Ads may not be protected from attack by neutralizing IgM antibodies or the complement pathway, which may have implications for species D Ads used as vaccine and gene therapy vectors.
Collapse
Affiliation(s)
- Katrin Schröer
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Montaha Alshawabkeh
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Sebastian Schellhorn
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Katrin Bronder
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Witten/Herdecke University, 58453 Witten, Germany
| |
Collapse
|
8
|
HEHR: Homing Endonuclease-Mediated Homologous Recombination for Efficient Adenovirus Genome Engineering. Genes (Basel) 2022; 13:genes13112129. [DOI: 10.3390/genes13112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Adenoviruses are non-enveloped linear double-stranded DNA viruses with over 100 types in humans. Adenovirus vectors have gained tremendous attention as gene delivery vehicles, as vaccine vectors and as oncolytic viruses. Although various methods have been used to generate adenoviral vectors, the vector-producing process remains technically challenging regarding efficacious genome modification. Based on our previously reported adenoviral genome modification streamline via linear–circular homologous recombination, we further develop an HEHR (combining Homing Endonucleases and Homologous Recombination) method to engineer adenoviral genomes more efficiently. I-PpoI, a rare endonuclease encoded by a group I intron, was introduced into the previously described ccdB counter-selection marker. We found that the I-PpoI pre-treatment of counter-selection containing parental plasmid increased the homologous recombination efficiency up to 100%. The flanking of the counter-selection marker with either single or double I-PpoI sites showed enhanced efficacy. In addition, we constructed a third counter-selection marker flanked by an alternative restriction enzyme: AbsI, which could be applied in case the I-PpoI site already existed in the transgene cassette that was previously inserted in the adenovirus genome. Together, HEHR can be applied for seamless sequence replacements, deletions and insertions. The advantages of HEHR in seamless mutagenesis will facilitate rational design of adenoviral vectors for diverse purposes.
Collapse
|
9
|
Bahlmann NA, Tsoukas RL, Erkens S, Wang H, Jönsson F, Aydin M, Naumova EA, Lieber A, Ehrhardt A, Zhang W. Properties of Adenovirus Vectors with Increased Affinity to DSG2 and the Potential Benefits of Oncolytic Approaches and Gene Therapy. Viruses 2022; 14:v14081835. [PMID: 36016457 PMCID: PMC9412290 DOI: 10.3390/v14081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022] Open
Abstract
Carcinomas are characterized by a widespread upregulation of intercellular junctions that create a barrier to immune response and drug therapy. Desmoglein 2 (DSG2) represents such a junction protein and serves as one adenovirus receptor. Importantly, the interaction between human adenovirus type 3 (Ad3) and DSG2 leads to the shedding of the binding domain followed by a decrease in the junction protein expression and transient tight junction opening. Junction opener 4 (JO-4), a small recombinant protein derived from the Ad3 fiber knob, was previously developed with a higher affinity to DSG2. JO-4 protein has been proven to enhance the effects of antibody therapy and chemotherapy and is now considered for clinical trials. However, the effect of the JO4 mutation in the context of a virus remains insufficiently studied. Therefore, we introduced the JO4 mutation to various adenoviral vectors to explore their infection properties. In the current experimental settings and investigated cell lines, the JO4-containing vectors showed no enhanced transduction compared with their parental vectors in DSG2-high cell lines. Moreover, in DSG2-low cell lines, the JO4 vectors presented a rather weakened effect. Interestingly, DSG2-negative cell line MIA PaCa-2 even showed resistance to JO4 vector infection, possibly due to the negative effect of JO4 mutation on the usage of another Ad3 receptor: CD46. Together, our observations suggest that the JO4 vectors may have an advantage to prevent CD46-mediated sequestration, thereby achieving DSG2-specific transduction.
Collapse
Affiliation(s)
- Nora A. Bahlmann
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Raphael L. Tsoukas
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Sebastian Erkens
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Franziska Jönsson
- Institute of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453 Witten, Germany
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Ella A. Naumova
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
- Correspondence: (A.E.); (W.Z.)
| |
Collapse
|
10
|
Dienst EGT, Kremer EJ. Adenovirus receptors on antigen-presenting cells of the skin. Biol Cell 2022; 114:297-308. [PMID: 35906865 DOI: 10.1111/boc.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
Abstract
Skin, the largest human organ, is part of the first line of physical and immunological defense against many pathogens. Understanding how skin antigen-presenting cells (APCs) respond to viruses or virus-based vaccines is crucial to develop antiviral pharmaceutics, and efficient and safe vaccines. Here, we discuss the way resident and recruited skin APCs engage adenoviruses and the impact on innate immune responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|