1
|
Principles to recover copper-conducting CTR proteins for the purpose of structural and functional studies. Protein Expr Purif 2023; 203:106213. [PMID: 36509382 DOI: 10.1016/j.pep.2022.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Transition metals such as copper and zinc are essential elements required for the survival of most organisms, from bacteria to humans. Yet, elevated levels of these elements are highly toxic. The Copper TRansporter protein family (CTRs) represents the only identified copper uptake proteins in eukaryotes and hence serves as key components for the maintenance of appropriate levels of the metal. Moreover, CTRs have been proposed to serve as an entry point into cells of certain cancer drugs and to constitute attractive drug-targets for novel antifungals. Nevertheless, the structure, function, and regulation of the CTRs remain elusive, limiting valuable information also for applied sciences. To this end, here we report procedures to isolate a range of CTR members using Saccharomyces cerevisiae as a production host, focusing on three homologs, human CTR1, human CTR2, and Candida albicans CTR. Using forms C-terminally-linked to a protease cleavage sequence, Green Fluorescent Protein (GFP), and a His-tag, assessment of the localization, quantification and purification was facilitated. Cellular accumulation of the proteins was investigated via live-cell imaging. Detergents compatible with acceptable solubilization yields were identified and fluorescence-detection size-exclusion-chromatography (F-SEC) revealed preferred membrane extraction conditions for the targets. For purification purposes, the solubilized CTR members were subjected to affinity chromatography and SEC, reaching near homogeneity. The quality and quantity of the CTRs studied will permit downstream efforts to uncover imperative biophysical aspects of these proteins, paving the way for subsequent drug-discovery studies.
Collapse
|
2
|
Höler S, Degreif D, Stix F, Yang S, Gao S, Nagel G, Moroni A, Thiel G, Bertl A, Rauh O. Tailoring baker's yeast Saccharomyces cerevisiae for functional testing of channelrhodopsin. PLoS One 2023; 18:e0280711. [PMID: 37053213 PMCID: PMC10101416 DOI: 10.1371/journal.pone.0280711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Channelrhodopsin 2 (ChR2) and its variants are the most frequent tools for remote manipulation of electrical properties in cells via light. Ongoing attempts try to enlarge their functional spectrum with respect to ion selectivity, light sensitivity and protein trafficking by mutations, protein engineering and environmental mining of ChR2 variants. A shortcoming in the required functional testing of large numbers of ChR2 variants is the lack of an easy screening system. Baker's yeast, which was successfully employed for testing ion channels from eukaryotes has not yet been used for screening of ChR2s, because they neither produce the retinal chromophore nor its precursor carotenoids. We found that addition of retinal to the external medium was not sufficient for detecting robust ChR activity in yeast in simple growth assays. This obstacle was overcome by metabolic engineering of a yeast strain, which constitutively produces retinal. In proof of concept experiments we functionally express different ChR variants in these cells and monitor their blue light induced activity in simple growth assays. We find that light activation of ChR augments an influx of Na+ with a consequent inhibition of cell growth. In a K+ uptake deficient yeast strain, growth can be rescued in selective medium by the blue light induced K+ conductance of ChR. This yeast strain can now be used as chassis for screening of new functional ChR variants and mutant libraries in simple yeast growth assays under defined selective conditions.
Collapse
Affiliation(s)
- Sebastian Höler
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Daniel Degreif
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Florentine Stix
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Shang Yang
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Shiqiang Gao
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Georg Nagel
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Adam Bertl
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|