1
|
Breton TS, Oliveira ME, Chillemi T, Harriman W, Korasadowicz J, Saverese E, Bourget E, Murray CA, Martyniuk CJ, DiMaggio MA. Spatial and quantitative gene expression analysis of SREB receptors in the gonads of green-spotted pufferfish (Dichotomyctere nigroviridis). Gen Comp Endocrinol 2025; 360:114641. [PMID: 39536984 PMCID: PMC11646178 DOI: 10.1016/j.ygcen.2024.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/21/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Super-conserved Receptors Expressed in Brain (SREB) are a highly conserved family of orphan G protein-coupled receptors that consist of three members in most vertebrates: SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). Each receptor is associated with diverse physiological processes and expressed in both ovaries and testes, but reproductive functions are only beginning to be understood. In addition, some fishes gained a novel fourth gene, SREB3B, which may have unique functions. The purpose of this study was to conduct a spatial and quantitative analysis of SREBs in the gonads of pufferfish (Dichotomyctere nigroviridis), which expresses all four genes. Multiplex RNAscope and absolute qPCR were used to assess gene expression patterns in both ovaries and testes. Expression was detected in early ovaries and dominated by sreb1 (approximately 2500 copies/ng RNA vs. 300 or less for others), with notable expression of all receptors in primary oocytes, granulosa cells, and small numbers of extra-follicular cells. Within primary oocytes, sreb1 and sreb3b exhibited diffuse patterns that may indicate early functions, while sreb2 and sreb3a were granular and may reflect stored mRNA. Early testicular development was dominated by sreb1 and sreb2 (∼5000 copies/ng RNA) in spermatogonia. These patterns were somewhat reduced in late testes (∼1000-2600 copies/ng RNA), but sreb3b exhibited a novel spatial pattern (∼380 copies/ng RNA) within spermatogenic cysts. These results highlight diverse roles for the SREB family, and sreb3b is hypothesized to have unique roles in fish reproduction.
Collapse
Affiliation(s)
- Timothy S Breton
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA.
| | | | - Truly Chillemi
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - William Harriman
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Joanna Korasadowicz
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Eme Saverese
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Emma Bourget
- Biology Department, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Casey A Murray
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matthew A DiMaggio
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| |
Collapse
|
2
|
Yang H, Wang Y, Liu W, He T, Liao J, Qian Z, Zhao J, Cong Z, Sun D, Liu Z, Wang C, Zhu L, Chen S. Genome-wide pan-GPCR cell libraries accelerate drug discovery. Acta Pharm Sin B 2024; 14:4296-4311. [PMID: 39525595 PMCID: PMC11544303 DOI: 10.1016/j.apsb.2024.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in mediating diverse physiological and pathological processes, rendering them promising targets for drug discovery. GPCRs account for about 40% of FDA-approved drugs, representing the most successful drug targets. However, only approximately 15% of the 800 human GPCRs are targeted by market drugs, leaving numerous opportunities for drug discovery among the remaining receptors. Cell expression systems play crucial roles in the GPCR drug discovery field, including novel target identification, structural and functional characterization, potential ligand screening, signal pathway elucidation, and drug safety evaluation. Here, we discuss the principles, applications, and limitations of widely used cell expression systems in GPCR-targeted drug discovery, GPCR function investigation, signal pathway characterization, and pharmacological property studies. We also propose three strategies for constructing genome-wide pan-GPCR cell libraries, which will provide a powerful platform for GPCR ligand screening, and facilitate the study of GPCR mechanisms and drug safety evaluation, ultimately accelerating the process of GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Hanting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongfu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Taiping He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayu Liao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- The Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongzhi Qian
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| | - Jinghao Zhao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingping Zhu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Mahardhika AB, Załuski M, Schoeder CT, Boshta NM, Schabikowski J, Perri F, Łażewska D, Neumann A, Kremers S, Oneto A, Ressemann A, Latacz G, Namasivayam V, Kieć-Kononowicz K, Müller CE. Potent, Selective Agonists for the Cannabinoid-like Orphan G Protein-Coupled Receptor GPR18: A Promising Drug Target for Cancer and Immunity. J Med Chem 2024; 67:9896-9926. [PMID: 38885438 DOI: 10.1021/acs.jmedchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in β-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.
Collapse
Affiliation(s)
- Andhika B Mahardhika
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| | - Michal Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Clara T Schoeder
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Nader M Boshta
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Filomena Perri
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Alexander Neumann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Sarah Kremers
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Angelo Oneto
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anastasiia Ressemann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
4
|
Pillaiyar T, Wozniak M, Abboud D, Rasch A, Liebing AD, Poso A, Kronenberger T, Stäubert C, Laufer SA, Hanson J. Development of Ligands for the Super Conserved Orphan G Protein-Coupled Receptor GPR27 with Improved Efficacy and Potency. J Med Chem 2023; 66:17118-17137. [PMID: 38060818 DOI: 10.1021/acs.jmedchem.3c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The orphan G protein-coupled receptor GPR27 appears to play a role in insulin production, secretion, lipid metabolism, neuronal plasticity, and l-lactate homeostasis. However, investigations on the function of GPR27 are impaired by the lack of potent and efficacious agonists. We describe herein the development of di- and trisubstituted benzamide derivatives 4a-e, 7a-z, and 7aa-ai, which display GPR27-specific activity in a β-arrestin 2 recruitment-based assay. Highlighted compounds are PT-91 (7p: pEC50 6.15; Emax 100%) and 7ab (pEC50 6.56; Emax 99%). A putative binding mode was revealed by the docking studies of 7p and 7ab with a GPR27 homology model. The novel active compounds exhibited no GPR27-mediated activation of G proteins, indicating that the receptor may possess an atypical profile. Compound 7p displays high metabolic stability and brain exposure in mice. Thus, 7p represents a novel tool to investigate the elusive pharmacology of GPR27 and assess its potential as a drug target.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
| | - Alexander Rasch
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Aenne-Dorothea Liebing
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, B-4000 Liège, Belgium
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
5
|
Breton TS, Fike S, Francis M, Patnaude M, Murray CA, DiMaggio MA. Characterizing the SREB G protein-coupled receptor family in fish: Brain gene expression and genomic differences in upstream transcription factor binding sites. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111507. [PMID: 37611891 PMCID: PMC10529039 DOI: 10.1016/j.cbpa.2023.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The SREB (Super-conserved Receptors Expressed in Brain) family of orphan G protein-coupled receptors is highly conserved in vertebrates and consists of three members: SREB1 (orphan designation GPR27), SREB2 (GPR85), and SREB3 (GPR173). SREBs are associated with processes ranging from neuronal plasticity to reproductive control. Relatively little is known about similarities across the entire family, or how mammalian gene expression patterns compare to non-mammalian vertebrates. In fish, this system may be particularly complex, as some species have gained a fourth member (SREB3B) while others have lost genes. To better understand the system, the present study aimed to: 1) use qPCR to characterize sreb and related gene expression patterns in the brains of three fish species with different systems, and 2) identify possible differences in transcriptional regulation among the receptors, using upstream transcription factor binding sites across 70 ray-finned fish genomes. Overall, regional patterns of sreb expression were abundant in forebrain-related areas. However, some species-specific patterns were detected, such as abundant expression of receptors in zebrafish (Danio rerio) hypothalamic-containing sections, and divergence between sreb3a and sreb3b in pufferfish (Dichotomyctere nigroviridis). In addition, a gene possibly related to the system (dkk3a) was spatially correlated with the receptors in all three species. Genomic regions upstream of sreb2 and sreb3b, but largely not sreb1 or sreb3a, contained many highly conserved transcription factor binding sites. These results provide novel information about expression differences and transcriptional regulation across fish that may inform future research to better understand these receptors.
Collapse
Affiliation(s)
- Timothy S Breton
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA.
| | - Samantha Fike
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Mullein Francis
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Michael Patnaude
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938, USA
| | - Casey A Murray
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| | - Matthew A DiMaggio
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570, USA
| |
Collapse
|
6
|
Pan J, Gao Y. Prognostic significance and immune characteristics of GPR27 in gastric cancer. Aging (Albany NY) 2023; 15:9144-9166. [PMID: 37702614 PMCID: PMC10522374 DOI: 10.18632/aging.205023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023]
Abstract
Gastric cancer (GC) is one of the most typical cancerous neoplasms occurring in the digestive system. For advanced GC, immunotherapy is the final option for them to prolong survival time. Hence, we aimed to identify new molecular targets to enhance the immunotherapy response in GC individuals. Then we applied bioinformatic analysis to explore the expression profiles of G-protein-coupled receptor 27 (GPR27) transcription and GPR27 methylation. The associations between survival of GC patients and GPR27 transcription and methylation were then analyzed. We also studied the link between GPR27 expression and levels of immune cell infiltration. Finally, we gained insights into the prognostic role of GPR27 protein in 97 cases of GC individuals. According to datasets gained from TCGA, GPR27 mRNA is expressed lower in GC tissues. Down-regulation of GPR27 transcription was related with better survival in GC individuals, and GPR27 cg03024619 had the most significant prognostic value (HR=0.553, P<0.0001). In addition, the expression level of GPR27 has a clear interaction with immune cells' infiltration and their markers. Single-cell analysis displayed that GPR27 is mainly expressed in macrophages. Finally, down-regulation of GPR27 protein was observed in GC tissues and correlated with better survival outcomes. GPR27 can serve as an important prognostic biomarker and exert an immunomodulatory role in GC. Our findings highlight the significance of GPR27 in a variety of cancers, including GC, and provide clues for a better understanding of GPR27 from bioinformatics and clinically validated perspective.
Collapse
Affiliation(s)
- Jun Pan
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuanjun Gao
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| |
Collapse
|
7
|
Astrocytes in the pathophysiology of neuroinfection. Essays Biochem 2023; 67:131-145. [PMID: 36562155 DOI: 10.1042/ebc20220082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Key homeostasis providing cells in the central nervous system (CNS) are astrocytes, which belong to the class of cells known as atroglia, a highly heterogeneous type of neuroglia and a prominent element of the brain defence. Diseases evolve due to altered homeostatic state, associated with pathology-induced astroglia remodelling represented by reactive astrocytes, astroglial atrophy and astrodegeneration. These features are hallmarks of most infectious insults, mediated by bacteria, protozoa and viruses; they are also prominent in the systemic infection. The COVID-19 pandemic revived the focus into neurotropic viruses such as SARS-CoV2 (Coronaviridae) but also the Flaviviridae viruses including tick-borne encephalitis (TBEV) and Zika virus (ZIKV) causing the epidemic in South America prior to COVID-19. Astrocytes provide a key response to neurotropic infections in the CNS. Astrocytes form a parenchymal part of the blood-brain barrier, the site of virus entry into the CNS. Astrocytes exhibit aerobic glycolysis, a form of metabolism characteristic of highly morphologically plastic cells, like cancer cells, hence a suitable milieu for multiplication of infectious agent, including viral particles. However, why the protection afforded by astrocytes fails in some circumstances is an open question to be studied in the future.
Collapse
|
8
|
Stäubert C, Wozniak M, Dupuis N, Laschet C, Pillaiyar T, Hanson J. Superconserved receptors expressed in the brain: Expression, function, motifs and evolution of an orphan receptor family. Pharmacol Ther 2022; 240:108217. [PMID: 35644261 DOI: 10.1016/j.pharmthera.2022.108217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
GPR27, GPR85 and GPR173 constitute a small family of G protein-coupled receptors (GPCR) that share the distinctive characteristics of being highly conserved throughout vertebrate evolution and predominantly expressed in the brain. Accordingly, they have been coined as "Superconserved Receptors Expressed in the Brain" (SREB), although their expression profile is more complex than what was originally thought. SREBs have no known validated endogenous ligands and are thus labeled as "orphan" receptors. The investigation of this particular category of uncharacterized receptors holds great promise both in terms of physiology and drug development. In the largest GPCR family, the Rhodopsin-like or Class A, around 100 receptors are considered orphans. Because GPCRs are the most successful source of drug targets, the discovery of a novel function or ligand most likely will lead to significant breakthroughs for the discovery of innovative therapies. The high level of conservation is one of the characteristic features of the SREBs. We propose herein a detailed analysis of the putative evolutionary origin of this family. We highlight the properties that distinguish SREBs from other rhodopsin-like GPCRs. We present the current evidence for these receptors downstream signaling pathways and functions. We discuss the pharmacological challenge for the identification of natural or synthetic ligands of orphan receptors like SREBs. The different SREB-related scientific questions are presented with a highlight on what should be addressed in the near future, including the confirmation of published evidence and their validation as drug targets. In particular, we discuss in which pathological conditions these receptors may be of great relevance to solve unmet medical needs.
Collapse
Affiliation(s)
- Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany.
| | - Monika Wozniak
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium; Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium.
| |
Collapse
|
9
|
Super-conserved receptors expressed in the brain: biology and medicinal chemistry efforts. Future Med Chem 2022; 14:899-913. [PMID: 35535715 DOI: 10.4155/fmc-2022-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The super-conserved receptors expressed in the brain (SREB) constitute a family of orphan G protein-coupled receptors that include GPR27 (SREB1), GPR85 (SREB2) and GPR173 (SREB3). Their sequences are highly conserved in vertebrates, and they are almost exclusively expressed in the central nervous system. This family of receptors has attracted much attention due to their putative physiological functions and their potential as novel drug targets. The SREB family has been postulated to play important roles in a wide range of different diseases, including pancreatic β-cell insulin secretion and regulation, schizophrenia, autism and atherosclerosis. This review intends to provide a comprehensive overview of the SREB family and its recent advances in biology and medicinal chemistry.
Collapse
|