1
|
Xiao Y, Zhang Y, Hu Y, Zhang X, Tan J, Yao S, Wang X, Qin Y. Advances in the study of posttranslational modifications of histones in head and neck squamous cell carcinoma. Clin Epigenetics 2024; 16:165. [PMID: 39574168 PMCID: PMC11580233 DOI: 10.1186/s13148-024-01785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
The pathogenesis of head and neck squamous cell carcinoma (HNSCC) is notably complex. Early symptoms are often subtle, and effective early screening methods are currently lacking. The tumors associated with HNSCC develop rapidly, exhibit high aggressiveness, and respond poorly to existing treatments, leading to low survival rates and poor prognosis. Numerous studies have demonstrated that histone posttranslational modifications (HPTMs), including acetylation, methylation, phosphorylation, and ubiquitination, play a critical role in the occurrence and progression of HNSCC. Moreover, targeting histone posttranslationally modified molecules with specific drugs has shown potential in enhancing therapeutic outcomes and improving prognosis, underscoring their significant clinical value. This review aims to summarize the role of histone posttranslational modifications in the pathogenesis and progression of HNSCC and to discuss their clinical significance, thereby providing insights into novel therapeutic approaches and drug development for this malignancy.
Collapse
Affiliation(s)
- Yuyang Xiao
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yikai Zhang
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yuyang Hu
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Xupeng Zhang
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Jiaqi Tan
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Shanhu Yao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
- Key Laboratory of Medical Information Research, Central South University, Changsha, 410013, Hunan Province, China
| | - Xingwei Wang
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| | - Yuexiang Qin
- Department of Health Management Medical, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, China.
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
2
|
VON Fournier A, Wilhelm C, Tirtey C, Stöth M, Kasemo TE, Hackenberg S, Scherzad A. Impact of Hypoxia and the Levels of Transcription Factor HIF-1α and JMJD1A on Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma Cell Lines. Cancer Genomics Proteomics 2024; 21:591-607. [PMID: 39467631 PMCID: PMC11534036 DOI: 10.21873/cgp.20476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND/AIM This study aimed to assess the impact of hypoxia on epithelial-mesenchymal transition (EMT) in head and neck squamous cell carcinoma (HNSCC), focusing on the involvement of transcription factors hypoxia inducible factor 1 (HIF-1α) and Jumonji Domain-Containing Protein 1A (JMJD1A). MATERIALS AND METHODS FaDu and Cal33 cell lines were subjected to hypoxic and normoxic conditions. Cell proliferation was quantified electronically, while PCR and western blot analyses were used to measure mRNA and protein levels of HIF-1α, JMJD1A, and EMT markers. EMT was further characterized through immunofluorescence, migration, and invasion assays. RESULTS Hypoxic conditions significantly reduced cell proliferation after 48 hours in both cell lines. HIF-1α mRNA levels increased initially during short-term hypoxia but declined thereafter, while JMJD1A mRNA levels showed a sustained increase with prolonged hypoxia. Western blot analysis revealed contrasting trends in protein levels. EMT marker expression varied markedly over time at both the mRNA and protein levels, suggesting EMT induction in hypoxia within 24 hours. Immunofluorescence, migration, and invasion assays supported these findings. CONCLUSION The study provides evidence of hypoxia-induced EMT in HNSCC, although conflicting results suggest a complex interplay among molecular regulators involved in this process.
Collapse
Affiliation(s)
- Armin VON Fournier
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christian Wilhelm
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Clara Tirtey
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Manuel Stöth
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Totta Ehret Kasemo
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
3
|
Tang J, Chen H, Fan H, Chen T, Pu C, Guo Y. Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms. Bioorg Med Chem 2024; 113:117929. [PMID: 39317007 DOI: 10.1016/j.bmc.2024.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extra-terminal domain (BET) protein family, which plays a crucial role in recognizing acetylated lysine residues in chromatin. The abnormal expression of BRD4 contributes to the development of various human malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Recent studies have shown that BRD4 inhibition can effectively prevent the proliferation and growth of HNSCC. However, the specific role and mechanism of BRD4 in HNSCC are not yet fully clarified. This article will briefly summarize the critical role of BRD4 in the pathogenesis of HNSCC and discuss the potential clinical applications of targeting BRD4 in HNSCC therapy. We further inquiry the challenges and opportunities for HNSCC therapies based on BRD4 inhibition, including BRD4 inhibitor combination with conventional chemotherapy, radiotherapy, and immunotherapy, as well as new strategies of BRD4-targeting drugs and BRD4 proteolysis-targeting chimeras (PROTACs). Moreover, we will also offer outlook on the associated challenges and future directions of targeting BRD4 for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Huaqiu Chen
- Department of Laboratory Medicine, Xichang People's Hospital, Xichang, Sichuan 615000, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| | - Tao Chen
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| | - Yuanbiao Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| |
Collapse
|
4
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
5
|
Dorna D, Kleszcz R, Paluszczak J. Triple Combinations of Histone Lysine Demethylase Inhibitors with PARP1 Inhibitor-Olaparib and Cisplatin Lead to Enhanced Cytotoxic Effects in Head and Neck Cancer Cells. Biomedicines 2024; 12:1359. [PMID: 38927566 PMCID: PMC11201379 DOI: 10.3390/biomedicines12061359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
PARP inhibitors are used to treat cancers with a deficient homologous recombination (HR) DNA repair pathway. Interestingly, recent studies revealed that HR repair could be pharmacologically impaired by the inhibition of histone lysine demethylases (KDM). Thus, we investigated whether KDM inhibitors could sensitize head and neck cancer cells, which are usually HR proficient, to PARP inhibition or cisplatin. Therefore, we explored the effects of double combinations of KDM4-6 inhibitors (ML324, CPI-455, GSK-J4, and JIB-04) with olaparib or cisplatin, or their triple combinations with both drugs, on the level of DNA damage and apoptosis. FaDu and SCC-040 cells were treated with individual compounds and their combinations, and cell viability, apoptosis, DNA damage, and gene expression were assessed using the resazurin assay, Annexin V staining, H2A.X activation, and qPCR, respectively. Combinations of KDM inhibitors with cisplatin enhanced cytotoxic effects, unlike combinations with olaparib. Triple combinations of KDM inhibitors with cisplatin and olaparib exhibited the best cytotoxic activity, which was associated with DNA damage accumulation and altered expression of genes associated with apoptosis induction and cell cycle arrest. In conclusion, triple combinations of KDM inhibitors (especially GSK-J4 and JIB-04) with cisplatin and olaparib represent a promising strategy for head and neck cancer treatment.
Collapse
Affiliation(s)
- Dawid Dorna
- Poznan University of Medical Sciences, Doctoral School, Department of Pharmaceutical Biochemistry, 60-806 Poznan, Poland;
| | - Robert Kleszcz
- Poznan University of Medical Sciences, Department of Pharmaceutical Biochemistry, 60-806 Poznan, Poland;
| | - Jarosław Paluszczak
- Poznan University of Medical Sciences, Department of Pharmaceutical Biochemistry, 60-806 Poznan, Poland;
| |
Collapse
|
6
|
Kim JH, Park C, Kim WS. Lysine demethylase LSD1 is associated with stemness in EBV-positive B cell lymphoma. Sci Rep 2024; 14:6764. [PMID: 38514636 PMCID: PMC10957933 DOI: 10.1038/s41598-024-55113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
EBV-infected lymphoma has a poor prognosis and various treatment strategies are being explored. Reports suggesting that B cell lymphoma can be induced by epigenetic regulation have piqued interest in studying mechanisms targeting epigenetic regulation. Here, we set out to identify an epigenetic regulator drug that acts synergistically with doxorubicin in EBV-positive lymphoma. We expressed the major EBV protein, LMP1, in B-cell lymphoma cell lines and used them to screen 100 epigenetic modifiers in combination with doxorubicin. The screening results identified TCP, which is an inhibitor of LSD1. Further analyses revealed that LMP1 increased the activity of LSD1 to enhance stemness ability under doxorubicin treatment, as evidenced by colony-forming and ALDEFLUOR activity assays. Quantseq 3' mRNA sequencing analysis of potential targets regulated by LSD1 in modulating stemness revealed that the LMP1-induced upregulation of CHAC2 was decreased when LSD1 was inhibited by TCP or downregulated by siRNA. We further observed that SOX2 expression was altered in response to CHAC2 expression, suggesting that stemness is regulated. Collectively, these findings suggest that LSD1 inhibitors could serve as promising therapeutic candidates for EBV-positive lymphoma, potentially reducing stemness activity when combined with conventional drugs to offer an effective treatment approach.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Chaehwa Park
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Won Seog Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Seoul, 06351, Korea.
| |
Collapse
|
7
|
Hou Y, Yu W, Wu G, Wang Z, Leng S, Dong M, Li N, Chen L. Carcinogenesis promotion in oral squamous cell carcinoma: KDM4A complex-mediated gene transcriptional suppression by LEF1. Cell Death Dis 2023; 14:510. [PMID: 37553362 PMCID: PMC10409759 DOI: 10.1038/s41419-023-06024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent cancer of the mouth, characterised by rapid progression and poor prognosis. Hence, an urgent need exists for the development of predictive targets for early diagnosis, prognosis determination, and clinical therapy. Dysregulation of lymphoid enhancer-binding factor 1 (LEF1), an important transcription factor involved in the Wnt-β-catenin pathway, contributes to the poor prognosis of OSCC. Herein, we aimed to explore the correlation between LEF1 and histone lysine demethylase 4 A (KDM4A). Results show that the KDM4A complex is recruited by LEF1 and specifically binds the LATS2 promoter region, thereby inhibiting its expression, and consequently promoting cell proliferation and impeding apoptosis in OSCC. We also established NOD/SCID mouse xenograft models using CAL-27 cells to conduct an in vivo analysis of the roles of LEF1 and KDM4A in tumour growth, and our findings show that cells stably suppressing LEF1 or KDM4A have markedly decreased tumour-initiating capacity. Overall, the results of this study demonstrate that LEF1 plays a pivotal role in OSCC development and has potential to serve as a target for early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Yiming Hou
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Wenqian Yu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Zhaoling Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shuai Leng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Ming Dong
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China.
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China.
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Zhang H, Wang H, Ye L, Bao S, Zhang R, Che J, Luo W, Yu C, Wang W. Comprehensive transcriptomic analyses identify KDM genes-related subtypes with different TME infiltrates in gastric cancer. BMC Cancer 2023; 23:454. [PMID: 37202737 DOI: 10.1186/s12885-023-10923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
Histone lysine demethylases (KDMs) have been reported in various malignances, which affect transcriptional regulation of tumor suppressor or oncogenes. However, the relationship between KDMs and formation of tumor microenvironment (TME) in gastric cancer (GC) remain unclear and need to be comprehensively analyzed.In the present study, 24 KDMs were obtained and consensus molecular subtyping was performed using the "NMF" method to stratify TCGA-STAD into three clusters. The ssGSEA and CIBERSORT algorithms were employed to assess the relative infiltration levels of various cell types in the TME. The KDM_score was devised to predict patient survival outcomes and responses to both immunotherapy and chemotherapy.Three KDM genes-related molecular subtypes were Figured out in GC with distinctive clinicopathological and prognostic features. Based on the robust KDM genes-related risk_score and nomogram, established in our work, GC patients' clinical outcome can be well predicted. Furthermore, low KDM genes-related risk_score exhibited the more effective response to immunotherapy and chemotherapy.This study characterized three KDM genes-related TME pattern with unique immune infiltration and prognosis by comprehensively analyses of transcriptomic profiling. Risk_score was also built to help clinicians decide personalized anticancer treatment for GC patients, including in prediction of immunotherapy and chemotherapy response for patients.
Collapse
Affiliation(s)
- Haichao Zhang
- Department of Osteoporosis and Bone Disease, Research Section of Geriatric Metabolic Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai Geriatric Institute, Shanghai, 200032, China
| | - Haoran Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Ye
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suyun Bao
- Department of Anesthesiology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, Jiangsu Province, China
| | - Ruijia Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ji Che
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenqin Luo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cheng Yu
- Gastrointestinal Surgery, Changshu No. 2 People's Hospital, No.18, Taishan Road, Changshu, 215500, Jiangsu Province, China
| | - Wei Wang
- Department of Clinical Laboratory, Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huai'an, 223400, People's Republic of China.
| |
Collapse
|
9
|
Chen TM, Huang CM, Setiawan SA, Hsieh MS, Sheen CC, Yeh CT. KDM5D Histone Demethylase Identifies Platinum-Tolerant Head and Neck Cancer Cells Vulnerable to Mitotic Catastrophe. Int J Mol Sci 2023; 24:ijms24065310. [PMID: 36982384 PMCID: PMC10049674 DOI: 10.3390/ijms24065310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major contributor to cancer incidence globally and is currently managed by surgical resection followed by adjuvant chemoradiotherapy. However, local recurrence is the major cause of mortality, indicating the emergence of drug-tolerant persister cells. A specific histone demethylase, namely lysine-specific demethylase 5D (KDM5D), is overexpressed in diverse types of cancers and involved in cancer cell cycle regulation. However, the role of KDM5D in the development of cisplatin-tolerant persister cells remains unexplored. Here, we demonstrated that KDM5D contributes to the development of persister cells. Aurora Kinase B (AURKB) disruption affected the vulnerability of persister cells in a mitotic catastrophe–dependent manner. Comprehensive in silico, in vitro, and in vivo experiments were performed. KDM5D expression was upregulated in HNSCC tumor cells, cancer stem cells, and cisplatin-resistant cells with biologically distinct signaling alterations. In an HNSCC cohort, high KDM5D expression was associated with a poor response to platinum treatment and early disease recurrence. KDM5D knockdown reduced the tolerance of persister cells to platinum agents and caused marked cell cycle deregulation, including the loss of DNA damage prevention, and abnormal mitosis-enhanced cell cycle arrest. By modulating mRNA levels of AURKB, KDM5D promoted the generation of platinum-tolerant persister cells in vitro, leading to the identification of the KDM5D/AURKB axis, which regulates cancer stemness and drug tolerance of HNSCC. Treatment with an AURKB inhibitor, namely barasertib, resulted in a lethal consequence of mitotic catastrophe in HNSCC persister cells. The cotreatment of cisplatin and barasertib suppressed tumor growth in the tumor mouse model. Thus, KDM5D might be involved in the development of persister cells, and AURKB disruption can overcome tolerance to platinum treatment in HNSCC.
Collapse
Affiliation(s)
- Tsung-Ming Chen
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Otolaryngology-Head and Neck Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chih-Ming Huang
- Department of Otolaryngology, Taitung Mackay Memorial Hospital, Taitung City 950408, Taiwan;
- Department of Nursing, Tajen University, Pingtung 90741, Taiwan
| | - Syahru Agung Setiawan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Medical Research & Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Ming-Shou Hsieh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan;
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
- Department of Periodontics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chih-Chi Sheen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan;
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
- Department of Periodontics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-C.S.); (C.-T.Y.); Tel.: +886-2-249-0088 (ext. 8885) (C.-C.S.); +886-2-249-0088 (ext. 8881) (C.-T.Y.); Fax: +886-2-2248-0900 (C.-C.S.); +886-2-2248-0900 (C.-T.Y.)
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
- Correspondence: (C.-C.S.); (C.-T.Y.); Tel.: +886-2-249-0088 (ext. 8885) (C.-C.S.); +886-2-249-0088 (ext. 8881) (C.-T.Y.); Fax: +886-2-2248-0900 (C.-C.S.); +886-2-2248-0900 (C.-T.Y.)
| |
Collapse
|
10
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
11
|
Gilmore SA, Tam D, Cheung TL, Snyder C, Farand J, Dick R, Matles M, Feng JY, Ramirez R, Li L, Yu H, Xu Y, Barnes D, Czerwieniec G, Brendza KM, Appleby TC, Birkus G, Willkom M, Kobayashi T, Paoli E, Labelle M, Boesen T, Tay CH, Delaney WE, Notte GT, Schmitz U, Feierbach B. Characterization of a KDM5 small molecule inhibitor with antiviral activity against hepatitis B virus. PLoS One 2022; 17:e0271145. [PMID: 36477212 PMCID: PMC9728921 DOI: 10.1371/journal.pone.0271145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B (CHB) is a global health care challenge and a major cause of liver disease. To find new therapeutic avenues with a potential to functionally cure chronic Hepatitis B virus (HBV) infection, we performed a focused screen of epigenetic modifiers to identify potential inhibitors of replication or gene expression. From this work we identified isonicotinic acid inhibitors of the histone lysine demethylase 5 (KDM5) with potent anti-HBV activity. To enhance the cellular permeability and liver accumulation of the most potent KDM5 inhibitor identified (GS-080) an ester prodrug was developed (GS-5801) that resulted in improved bioavailability and liver exposure as well as an increased H3K4me3:H3 ratio on chromatin. GS-5801 treatment of HBV-infected primary human hepatocytes reduced the levels of HBV RNA, DNA and antigen. Evaluation of GS-5801 antiviral activity in a humanized mouse model of HBV infection, however, did not result in antiviral efficacy, despite achieving pharmacodynamic levels of H3K4me3:H3 predicted to be efficacious from the in vitro model. Here we discuss potential reasons for the disconnect between in vitro and in vivo efficacy, which highlight the translational difficulties of epigenetic targets for viral diseases.
Collapse
Affiliation(s)
- Sarah A. Gilmore
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Danny Tam
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Tara L. Cheung
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Chelsea Snyder
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Julie Farand
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Ryan Dick
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Mike Matles
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Joy Y. Feng
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Ricardo Ramirez
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Li Li
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Helen Yu
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Yili Xu
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Dwight Barnes
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Gregg Czerwieniec
- Gilead Sciences, Inc., Foster City, California, United States America
| | | | - Todd C. Appleby
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Gabriel Birkus
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Madeleine Willkom
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Tetsuya Kobayashi
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Eric Paoli
- Gilead Sciences, Inc., Foster City, California, United States America
| | | | - Thomas Boesen
- EpiTherapeutics ApS, Copenhagen, Denmark
- Novo Nordisk A/S, Bagsvaerd, Denmark
| | - Chin H. Tay
- Gilead Sciences, Inc., Foster City, California, United States America
| | | | - Gregory T. Notte
- Gilead Sciences, Inc., Foster City, California, United States America
| | - Uli Schmitz
- Gilead Sciences, Inc., Foster City, California, United States America
- * E-mail:
| | - Becket Feierbach
- Gilead Sciences, Inc., Foster City, California, United States America
| |
Collapse
|
12
|
Jayaseelan VP, Arumugam P. Epigenetic modulator LSD1, a theragnostic target for potentially malignant oral disorders and malignant lesions. Epigenomics 2022; 14:1229-1232. [DOI: 10.2217/epi-2022-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Vijayashree Priyadharsini Jayaseelan
- Clinical Genetics Lab, Centre for Cellular & Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Paramasivam Arumugam
- Molecular Biology Lab, Centre for Cellular & Molecular Research, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|