1
|
Wu X, Yang Q, Leng L, Yang P, Zhu Z. Altered metabolic profiles in colon and rectal cancer. Sci Rep 2025; 15:11310. [PMID: 40175601 PMCID: PMC11965280 DOI: 10.1038/s41598-025-96004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignant tumour in worldwide populations. Although colon cancer (CC) and rectal cancer (RC) are often discussed together, there is a global trend towards considering them as two separate disease entities. It is necessary to choice the appropriate treatment for CC and RC based on their own characteristics. Hence, it is a great importance to find effective biomarkers to distinguish CC from RC. In the present study, a total of 343 participants were recruited, including 132 healthy individuals, 101 patients with CC, and 110 patients with RC. The concentrations of 93 metabolites were determined by using a combination of dried blood spot sampling and direct infusion mass spectrometry technology. Multiple algorithms were applied to characterize altered metabolic profiles in CC and RC. Significantly altered metabolites were screened for distinguishing RC from CC in training set. A biomarker panel including Glu, C0, C8, C20, Gly/Ala, and C10:1 was tested with tenfold cross-validation and an independent test set, and showed the potential to distinguish between RC and CC. The metabolomics analysis makes contribution to summarize the metabolic differences in RC and CC, which might provide further guidance on novel clinical designs for the two diseases.
Collapse
Affiliation(s)
- Xue Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China
| | - Qi Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China
| | - Li Leng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China
| | - Peng Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China.
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, China.
| | - Zhitu Zhu
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabonomics, Jinzhou Medical University, Jinzhou, China.
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
2
|
Chen M, Liu H, Xiao Y, Liang R, Xu H, Hong B, Qian Y. Predictive biomarkers of pancreatic cancer metastasis: A comprehensive review. Clin Chim Acta 2025; 569:120176. [PMID: 39914505 DOI: 10.1016/j.cca.2025.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/12/2025]
Abstract
This review provides a comprehensive overview of predictive biomarkers associated with metastasis in pancreatic cancer (PC), one of the most aggressive malignancies characterized by late-stage diagnosis and poor prognosis. Metastasis, particularly to the liver, lungs, and lymph nodes, significantly worsens patient outcomes by compromising organ function and promoting disease progression. Reliable biomarkers for predicting and detecting metastasis at early stages are critical for improving survival rates and guiding personalized therapies. This paper highlights both general and specific biomarkers, including genetic mutations, protein expression changes, and carbohydrate tumor markers such as CA19-9. Immunological factors, including PD-L1, inflammatory cytokines, and chemokines, further influence the metastatic process within the tumor microenvironment (TME). Specific biomarkers play pivotal roles in promoting metastasis through mechanisms such as epithelial-to-mesenchymal transition (EMT), tumor microenvironment remodeling, and immune evasion. Emerging markers such as circulating tumor cells (CTCs) and volatile organic compounds (VOCs) offer promising non-invasive tools for metastasis detection and monitoring. This review not only consolidates existing knowledge but also highlights the mechanisms through which specific biomarkers facilitate metastasis. Despite recent progress, challenges such as biomarker standardization, technical variability, and clinical validation remain, and addressing these hurdles is essential for integrating predictive biomarkers into clinical practice. Ultimately, this review contributes to advancing early detection strategies, personalized treatment options, and improved prognosis for PC patients.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ruijin Liang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China
| | - Hong Xu
- Departments of Pathology, Quzhou Second People's Hospital, Quzhou 324022, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
3
|
Wang X, Guan P, You L, Qin W, Li Q, Wang X, Chen Q, Yu D, Ye Y, Wang T, Liu X, Fan J, Xu G. Risk of serum circulating environmental chemical residues to esophageal squamous cell carcinoma: a nested case-control metabolome-wide association study. Anal Bioanal Chem 2025:10.1007/s00216-025-05784-5. [PMID: 39939416 DOI: 10.1007/s00216-025-05784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the primary histological subtype of esophageal carcinoma, yet research on environmental exposure risks and associated metabolic alterations preceding ESCC is limited. In a nested case-control cohort of 396 adults (199 diagnosed with ESCC and 197 healthy controls (HC)), we combined exposomics and metabolomics to assess circulating chemical residues and early serum metabolic changes linked to ESCC risk. A cell experiment further evaluated the proliferative impact of 1H,1H,2H,2H-perfluorooctanesulfonic acid (6:2 FTS), identifying it as a risk factor for ESCC, primarily through lipid metabolism-related chronic inflammation. Significant metabolic disruptions were observed in ESCC cases, characterized by increased carnitines, phosphatidylcholines (PCs), and triglycerides (TGs) alongside reduced lysophosphatidylcholines (LPCs) and ether lysophosphatidylcholines (LPC-Os). An early-warning biomarker panel, including glutamic acid, methionine, choline, LPC-O 18:0, TG (14:0_18:2_20:5), and PC (18:0_20:4)/LPC 18:0, showed improved predictive capacity when combined with 6:2 FTS. Metabolome-exposome-wide association studies largely confirmed 6:2 FTS as a potential ESCC risk factor through lipid mediation. This study offers novel insights for ESCC prevention and early diagnosis through a combined biomarker panel integrating metabolic and environmental risk indicators.
Collapse
Affiliation(s)
- Xiaokun Wang
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengwei Guan
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei You
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wangshu Qin
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolin Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Chen
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Yu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaorui Ye
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Liu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinhu Fan
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Ucdal M, Burus A, Celtikci B. Cross talk between genetics and biochemistry in the pathogenesis of hepatocellular carcinoma. HEPATOLOGY FORUM 2024; 5:150-160. [PMID: 39006147 PMCID: PMC11237245 DOI: 10.14744/hf.2023.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 07/16/2024]
Abstract
The liver is a crucial organ in the regulation of metabolism, signaling, and homeostasis. Using recent advanced sequencing technologies, several mutations of genes in major metabolic and signaling pathways have been discovered in the pathogenesis of hepatocellular carcinoma (HCC). These gene signatures alter expression and ultimately affect biochemical pathways by modifying enzyme/protein levels, resulting in numerous clinical outcomes related to HCC. It comes with varying forms of genetic and biochemical alterations, associated with carbohydrate, lipid, nucleic acid, and amino acid metabolism, as well as signaling pathways linked to tumorigenesis. Here, we aim to summarize the main components and mechanisms involved in the progression of HCC with a special focus on the metabolic regulation of key effectors of tumorigenesis, through the crosstalk between genetics and biochemistry. This paper provides an overview of hepatocellular carcinoma, underlying the fundamental effect of gene variations on metabolic and signaling pathways. Since there is still an unmet need for biomarkers and novel therapeutic targets, some of these signature genes or proteins can be used as novel biomarkers for diagnosis, prognosis, and novel potential therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Mete Ucdal
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkiye
| | - Ayse Burus
- Department of Medical Biochemistry, Hacettepe University, School of Medicine, Ankara, Turkiye
| | - Basak Celtikci
- Department of Medical Biochemistry, Hacettepe University, School of Medicine, Ankara, Turkiye
| |
Collapse
|
5
|
Chowdhury RR, Grosso MF, Gadara DC, Spáčil Z, Vidová V, Sovadinová I, Babica P. Cyanotoxin cylindrospermopsin disrupts lipid homeostasis and metabolism in a 3D in vitro model of the human liver. Chem Biol Interact 2024; 397:111046. [PMID: 38735451 DOI: 10.1016/j.cbi.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Riju Roy Chowdhury
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Marina Felipe Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | | | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Veronika Vidová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
6
|
Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol 2024; 15:206. [PMID: 38833109 DOI: 10.1007/s12672-024-01069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), an aggressive malignancy with a dismal prognosis, poses a significant public health challenge. Recent research has highlighted the crucial role of lipid metabolism in HCC development, with enhanced lipid synthesis and uptake contributing to the rapid proliferation and tumorigenesis of cancer cells. Lipids, primarily synthesized and utilized in the liver, play a critical role in the pathological progression of various cancers, particularly HCC. Cancer cells undergo metabolic reprogramming, an essential adaptation to the tumor microenvironment (TME), with fatty acid metabolism emerging as a key player in this process. This review delves into intricate interplay between HCC and lipid metabolism, focusing on four key areas: de novo lipogenesis, fatty acid oxidation, dysregulated lipid metabolism of immune cells in the TME, and therapeutic strategies targeting fatty acid metabolism for HCC treatment.
Collapse
Affiliation(s)
- Yulin Cheng
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Zuo
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China.
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
7
|
Fu X, Li X, Wang W, Li J. DPP3 promotes breast cancer tumorigenesis by stabilizing FASN and promoting lipid synthesis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:805-818. [PMID: 38655619 PMCID: PMC11177116 DOI: 10.3724/abbs.2024054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/26/2024] Open
Abstract
DPP3, a dipeptidyl peptidase, participates in a variety of pathophysiological processes. DPP3 is upregulated in cancer and might serve as a key factor in the tumorigenesis and progression of various malignancies. However, its specific role and molecular mechanism are still unknown. In this study, the expression of DPP3 in breast cancer tissues is analyzed using TCGA database. Kaplan-Meier survival analysis is performed to estimate the effect of DPP3 on the survival outcomes. To explore the biological function and mechanisms of DPP3 in breast cancer, biochemical and cell biology assays are conducted in vitro. DPP3 expresses at a higher level in breast cancer tissues than that in adjacent tissues in both TCGA database and clinical samples. Patients with high expression of DPP3 have poor survival outcomes. The proliferation and migration abilities of tumor cells with stable DPP3 knockout in breast cancer cell lines are significantly inhibited, and apoptosis is increased in vitro. GSEA analysis shows that DPP3 can affect lipid metabolism and fatty acid synthesis in tumors. Subsequent experiments show that DPP3 could stabilize FASN expression and thus promote fatty acid synthesis in tumor cells. The results of the metabolomic analysis also confirm that DPP3 can affect the content of free fatty acids. This study demonstrates that DPP3 plays a role in the reprogramming of fatty acid metabolism in tumors and is associated with poor prognosis in breast cancer patients. These findings will provide a new therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
- Department of General SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Xu Li
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072China
| | - Weixing Wang
- Department of General SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Juanjuan Li
- Department of Breast and Thyroid SurgeryRenmin Hospital of Wuhan UniversityWuhan430060China
| |
Collapse
|
8
|
Liu W, Wang S, Lin L, Zou R, Sun H, Zeng K, Wu Y, Li Y, Shigeaki K, Wang X, Wang C, Zhao Y. BAP18 acting as a novel peroxisome proliferator-activated receptor α co-regulator contributes to hepatocellular carcinoma progression. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166974. [PMID: 38042310 DOI: 10.1016/j.bbadis.2023.166974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide with a poor prognosis. The therapeutic outcomes of HCC patients are urgently needed to be improved, and predictive biomarkers for the optimal treatment selection remains to be further defined. In the present study, our results showed that BPTF-associated protein of 18 KDa (BAP18) was highly expressed in HCC tissues. In cultured HCC cells, BAP18 regulated a subset of down-stream genes involved in different functions, particularly including peroxisome proliferator-activated receptor (PPAR) pathway and lipid metabolism. Furthermore, BAP18 co-activated PPARα-mediated transactivation and facilitated the recruitment of nucleosome acetyltransferase of H4 (NuA4)/tat interacting protein 60 (TIP60) complex, thereby increasing histone H4 acetylation on stearoyl-CoA desaturase 1 (SCD1) loci. In addition, BAP18 promoted HCC cell proliferation, increased intracellular lipid levels and enhanced cell survival under the metabolic stress conditions, such as glucose limitation or tyrosine kinase inhibitors (TKIs) treatment. Importantly, higher BAP18 expression was positively correlated with the postoperative recurrence and the poor disease-free survival in clinical patients receiving sorafenib treatment. Altogether, we discovered that BAP18 plays an oncogenic role in the survival and proliferation of HCC cells, and BAP18 may serve as a predictive biomarker for adjunct TKIs treatment in patients with HCC, and further facilitate the precise treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province 110004, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Renlong Zou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Hongmiao Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China
| | - Yi Wu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China; Department of Pathogenic Biology, Shenyang Medical College, Shenyang City, Liaoning Province 110034, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province 110001, China
| | - Kato Shigeaki
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima 9708551, Japan
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province 110004, China.
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, and Key laboratory of Cell Biology, Ministry of Public Health, School of Life Sciences, China Medical University, Shenyang City, Liaoning Province 110122, China.
| |
Collapse
|
9
|
Luna-Marco C, Ubink A, Kopsida M, Heindryckx F. Endoplasmic Reticulum Stress and Metabolism in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1377-1388. [PMID: 36309104 DOI: 10.1016/j.ajpath.2022.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, accounting for 85% to 90% of all liver cancer cases. It is a hepatocyte-derived primary tumor, causing 550,000 deaths per year, ranking it as one of the most common cancers worldwide. The liver is a highly metabolic organ with multiple functions, including digestion, detoxification, breakdown of fats, and production of bile and cholesterol, in addition to storage of vitamins, glycogen, and minerals, and synthesizing plasma proteins and clotting factors. Due to these fundamental and diverse functions, the malignant transformation of hepatic cells can have a severe impact on the liver's metabolism. Furthermore, tumorigenesis is often accompanied by activation of the endoplasmic reticulum (ER) stress pathways, which are known to be highly intertwined with several metabolic pathways. Because HCC is characterized by changes in the metabolome and by an aberrant activation of the ER stress pathways, the aim of this review was to summarize the current knowledge that links ER stress and metabolism in HCC, thereby focusing on potential therapeutic targets.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Ubink
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Maria Kopsida
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Huang Z, Jing H, Lv J, Chen Y, Huang Y, Sun S. Investigating Doxorubicin's mechanism of action in cervical cancer: a convergence of transcriptomic and metabolomic perspectives. Front Genet 2023; 14:1234263. [PMID: 37701623 PMCID: PMC10494242 DOI: 10.3389/fgene.2023.1234263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/04/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction: Cervical cancer remains a significant global health burden, and Doxorubicin is a crucial therapeutic agent against this disease. However, the precise molecular mechanisms responsible for its therapeutic effects are not fully understood. Methods: In this study, we employed a multi-omics approach that combined transcriptomic and metabolomic analyses with cellular and in vivo experiments. The goal was to comprehensively investigate the molecular landscape associated with Doxorubicin treatment in cervical cancer. Results: Our unbiased differential gene expression analysis revealed distinct alterations in gene expression patterns following Doxorubicin treatment. Notably, the ANKRD18B gene exhibited a prominent role in the response to Doxorubicin. Simultaneously, our metabolomic analysis demonstrated significant perturbations in metabolite profiles, with a particular focus on L-Ornithine. The correlation between ANKRD18B gene expression and L-Ornithine levels indicated a tightly controlled gene-metabolite network. These results were further confirmed through rigorous cellular and in vivo experiments, which showed reductions in subcutaneous tumor size and significant changes in ANKRD18B, L-Ornithine, and Doxorubicin concentration. Discussion: The findings of this study underscore the intricate interplay between transcriptomic and metabolomic changes in response to Doxorubicin treatment. These insights could have implications for the development of more effective therapeutic strategies for cervical cancer. The identification of ANKRD18B and L-Ornithine as key components in this process lays the groundwork for future research aiming to unravel the complex molecular networks that underlie Doxorubicin's therapeutic mechanism. While this study provides a solid foundation, it also highlights the necessity for further investigation to fully grasp these interactions and their potential implications for cervical cancer treatment.
Collapse
Affiliation(s)
- Zhuo Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huining Jing
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Juanjuan Lv
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - YuanQiong Huang
- Department of Oncology, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, China
| | - Shuwen Sun
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Chen X, Li YX, Cao X, Qiang MY, Liang CX, Ke LR, Cai ZC, Huang YY, Zhan ZJ, Zhou JY, Deng Y, Zhang LL, Huang HY, Li X, Mei J, Xie GT, Guo X, Lv X. Widely targeted quantitative lipidomics and prognostic model reveal plasma lipid predictors for nasopharyngeal carcinoma. Lipids Health Dis 2023; 22:81. [PMID: 37365637 DOI: 10.1186/s12944-023-01830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Dysregulation of lipid metabolism is closely associated with cancer progression. The study aimed to establish a prognostic model to predict distant metastasis-free survival (DMFS) in patients with nasopharyngeal carcinoma (NPC), based on lipidomics. METHODS The plasma lipid profiles of 179 patients with locoregionally advanced NPC (LANPC) were measured and quantified using widely targeted quantitative lipidomics. Then, patients were randomly split into the training (125 patients, 69.8%) and validation (54 patients, 30.2%) sets. To identify distant metastasis-associated lipids, univariate Cox regression was applied to the training set (P < 0.05). A deep survival method called DeepSurv was employed to develop a proposed model based on significant lipid species (P < 0.01) and clinical biomarkers to predict DMFS. Concordance index and receiver operating curve analyses were performed to assess model effectiveness. The study also explored the potential role of lipid alterations in the prognosis of NPC. RESULTS Forty lipids were recognized as distant metastasis-associated (P < 0.05) by univariate Cox regression. The concordance indices of the proposed model were 0.764 (95% confidence interval (CI), 0.682-0.846) and 0.760 (95% CI, 0.649-0.871) in the training and validation sets, respectively. High-risk patients had poorer 5-year DMFS compared with low-risk patients (Hazard ratio, 26.18; 95% CI, 3.52-194.80; P < 0.0001). Moreover, the six lipids were significantly correlated with immunity- and inflammation-associated biomarkers and were mainly enriched in metabolic pathways. CONCLUSIONS Widely targeted quantitative lipidomics reveals plasma lipid predictors for LANPC, the prognostic model based on that demonstrated superior performance in predicting metastasis in LANPC patients.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | | | - Xun Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Meng-Yun Qiang
- Department of Head and Neck Radiotherapy, the Cancer Hospitalof the, University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences , Hangzhou, 310022, China
| | - Chi-Xiong Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Liang-Ru Ke
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhuo-Chen Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ying-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ze-Jiang Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jia-Yu Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ying Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lu-Lu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hao-Yang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang Li
- Ping An Technology, Shenzhen, 518000, China
| | - Jing Mei
- Ping An Technology, Shenzhen, 518000, China
| | | | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
12
|
Zou Y, Sun Y, Chen X, Hong L, Dong G, Bai X, Wang H, Rao B, Ren Z, Yu Z. Nanosecond pulse effectively ablated hepatocellular carcinoma with alterations in the gut microbiome and serum metabolites. Front Pharmacol 2023; 14:1163628. [PMID: 37234705 PMCID: PMC10205996 DOI: 10.3389/fphar.2023.1163628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. Nanosecond pulsed electric fields (nsPEFs) have emerged as a new treatment for cancer. This study aims to identify the effectiveness of nsPEFs in the treatment of HCC and analyze the alterations in the gut microbiome and serum metabonomics after ablation. Methods: C57BL/6 mice were randomly divided into three groups: healthy control mice (n = 10), HCC mice (n = 10), and nsPEF-treated HCC mice (n = 23). Hep1-6 cell lines were used to establish the HCC model in situ. Histopathological staining was performed on tumor tissues. The gut microbiome was analyzed by 16S rRNA sequencing. Serum metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. Spearman's correlation analysis was carried out to analyze the correlation between the gut microbiome and serum metabonomics. Results: The fluorescence image showed that nsPEFs were significantly effective. Histopathological staining identified nuclear pyknosis and cell necrosis in the nsPEF group. The expression of CD34, PCNA, and VEGF decreased significantly in the nsPEF group. Compared with normal mice, the gut microbiome diversity of HCC mice was increased. Eight genera including Alistipes and Muribaculaceae were enriched in the HCC group. Inversely, these genera decreased in the nsPEF group. LC-MS analysis confirmed that there were significant differences in serum metabolism among the three groups. Correlation analysis showed crucial relationships between the gut microbiome and serum metabolites that are involved in nsPEF ablation of HCC. Conclusion: As a new minimally invasive treatment for tumor ablation, nsPEFs have an excellent ablation effect. The alterations in the gut microbiome and serum metabolites may participate in the prognosis of HCC ablation.
Collapse
Affiliation(s)
- Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Liangjie Hong
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Marry School, Nanchang, Jiangxi, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
14
|
Screening for Lipid-Metabolism-Related Genes and Identifying the Diagnostic Potential of ANGPTL6 for HBV-Related Early-Stage Hepatocellular Carcinoma. Biomolecules 2022; 12:biom12111700. [DOI: 10.3390/biom12111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Lipid metabolic reprogramming is one of the hallmarks of hepatocarcinogenesis and development. Therefore, lipid-metabolism-related genes may be used as potential biomarkers for hepatocellular carcinoma (HCC). This study aimed to screen for genes with dysregulated expression related to lipid metabolism in HCC and explored the clinical value of these genes. We screened differentially expressed proteins between tumorous and adjacent nontumorous tissues of hepatitis B virus (HBV)-related HCC patients using a Nanoscale Liquid Chromatography–Tandem Mass Spectrometry platform and combined it with transcriptomic data of lipid-metabolism-related genes from the GEO and HPA databases to identify dysregulated genes that may be involved in lipid metabolic processes. The potential clinical values of these genes were explored by bioinformatics online analysis tools (GEPIA, cBioPortal, SurvivalMeth, and TIMER). The expression levels of the secreted protein (angiopoietin-like protein 6, ANGPTL6) in serum were analyzed by ELISA. The ability of serum ANGPTL6 to diagnose early HCC was assessed by ROC curves. The results showed that serum ANGPTL6 could effectively differentiate between HBV-related early HCC patients with normal serum alpha-fetoprotein (AFP) levels and the noncancer group (healthy participants and chronic hepatitis B patients) (AUC = 0.717, 95% CI: from 0.614 to 0.805). Serum ANGPTL6 can be used as a potential second-line biomarker to supplement serum AFP in the early diagnosis of HBV-related HCC.
Collapse
|