1
|
王 许, 张 杨, 罗 刚, 孔 军, 曹 向, 王 庆. [Fibulin-3 Regulates Tissue Inhibitor of Metalloproteinases 3 to Inhibit Senescence in Intervertebral Disc Nucleus Pulposus Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1217-1225. [PMID: 39507955 PMCID: PMC11536236 DOI: 10.12182/20240760604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 11/08/2024]
Abstract
Objective To investigate the effect of fibulin-3 on the senescence of intervertebral disc nucleus pulposus cells (NPCs) through the regulation of tissue inhibitor of metalloproteinases 3 (TIMP-3) expression and to elucidate the molecular mechanisms involved. Methods 1). The nucleus pulposus tissues and imaging data of 37 patients who had undergone intervertebral disc surgery were collected. The degree of degeneration of the intervertebral discs were classified according to the Pfirrmann grading system. The senescence degree of NPCs was determined using senescence-associated β-galactosidase (SA-β-gal) staining. Fibulin-3 expression levels were determined using Western blot and ELISA. The relationship between fibulin-3 and disc degeneration and NPCs senescence was investigated. 2). Human intervertebral disc NPCs were cultured in vitro. The proliferation and senescence of NPC across continuous passage were observed via CCK-8 assay and SA-β-gal staining, respectively. Fibulin-3 expression levels and the expression of inflammatory cytokines and matrix metalloproteinases were assessed. Exogenous fibulin-3 was added to verify its effect on the proliferation and senescence of NPCs. 3). The effect of fibulin-3 on the apoptosis and proliferation of NPCs was verified through gene overexpression, which was used in combination with an apoptosis inhibitor for bidirectional verification. 4). Bioinformatics analysis was performed to explore the relationship between fibulin-3 and the TIMP family. Experiments overexpressing fibulin-3 and silencing the TIMP-3 gene were performed to verify their role in NPCs senescence. Results 1). The intervertebral disc degeneration samples from 37 patients were classified according to the Pfirrmann grading system. The higher the degeneration grade, the lower fibulin-3 expression. Spearman correlation analysis showed that the disc grade was negatively correlated with the NPC senescence grade (r=-0.87, P<0.001) and fibulin-3 expression (r=-0.79, P<0.001). 2). As the passage number of NPCs increased, fibulin-3 expression gradually decreased, cell proliferation ability weakened, and the expression of inflammatory cytokines and matrix metalloproteinases increased. After exogenous fibulin-3 was added, cell morphology and growth status were maintained, cell senescence was significantly inhibited, and the expression of inflammatory cytokines and matrix metalloproteinases was markedly reduced. 3). Gene overexpression experiments showed that fibulin-3 reduced NPC apoptosis and promoted cell proliferation, thereby inhibiting NPC senescence. 4). Bioinformatics analysis revealed a significant association between fibulin-3 and TIMP-3 of the TIMP family. Further experiments confirmed that overexpressing fibulin-3 enhanced TIMP-3 expression, while silencing the TIMP-3 gene significantly weakened the inhibitory effect of fibulin-3 on NPCs senescence. This indicates that, through regulating TIMP-3, fibulin-3 inhibits the activity of matrix metalloproteinases, affects the synthesis and degradation of the extracellular matrix, and ultimately inhibits NPCs senescence. Conclusion This study demonstrates that fibulin-3 plays a crucial role in inhibiting the senescence of intervertebral disc NPCs by regulating TIMP-3. The specific mechanisms involved are as follows, fibulin-3 upregulates TIMP-3 expression, inhibits matrix metalloproteinase activity, and reduces extracellular matrix degradation, thereby promoting extracellular matrix synthesis. Additionally, fibulin-3 inhibits NPCs senescence by reducing apoptosis and promoting cell proliferation. Therefore, fibulin-3 and TIMP-3 have potential therapeutic significance in maintaining intervertebral disc health and delaying degeneration.
Collapse
Affiliation(s)
- 许可 王
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 杨 张
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 刚 罗
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 军珂 孔
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 向阳 曹
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| | - 庆丰 王
- 河南省洛阳正骨医院(河南省骨科医院) (洛阳 471002)Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang 471002, China
| |
Collapse
|
2
|
Gilbert HTJ, Wignall FEJ, Zeef L, Hoyland JA, Richardson SM. Transcriptomic profiling reveals key early response genes during GDF6-mediated differentiation of human adipose-derived stem cells to nucleus pulposus cells. JOR Spine 2024; 7:e1315. [PMID: 38249721 PMCID: PMC10797253 DOI: 10.1002/jsp2.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Background Stem cell-based therapies show promise as a means of repairing the degenerate intervertebral disc, with growth factors often used alongside cells to help direct differentiation toward a nucleus pulposus (NP)-like phenotype. We previously demonstrated adipose-derived stem cell (ASC) differentiation with GDF6 as optimal for generating NP-like cells through evaluating end-stage differentiation parameters. Here we conducted a time-resolved transcriptomic characterization of ASCs response to GDF6 stimulation to understand the early drivers of differentiation to NP-like cells. Methods Human ASCs were treated with recombinant human GDF6 for 2, 6, and 12 h. RNA sequencing and detailed bioinformatic analysis were used to assess differential gene expression, gene ontology (GO), and transcription factor involvement during early differentiation. Quantitative polymerase chain reaction (qPCR) was used to validate RNA sequencing findings and inhibitors used to interrogate Smad and Erk signaling pathways, as well as identify primary and secondary response genes. Results The transcriptomic response of ASCs to GDF6 stimulation was time-resolved and highly structured, with "cell differentiation" "developmental processes," and "response to stimulus" identified as key biological process GO terms. The transcription factor ERG1 was identified as a key early response gene. Temporal cluster analysis of differentiation genes identified positive regulation NP cell differentiation, as well as inhibition of osteogenesis and adipogenesis. A role for Smad and Erk signaling in the regulation of GDF6-induced early gene expression response was observed and both primary and secondary response genes were identified. Conclusions This study identifies a multifactorial early gene response that contributes to lineage commitment, with the identification of a number of potentially useful early markers of differentiation of ASCs to NP cells. This detailed insight into the molecular processes in response to GDF6 stimulation of ASCs is important for the development of an efficient and efficacious cell-based therapy for intervertebral disc degeneration-associated back pain.
Collapse
Affiliation(s)
- Hamish T. J. Gilbert
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Francis E. J. Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Leo Zeef
- Bioinformatics Core Facility, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
3
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
4
|
Kakutani K, Yurube T, An HS, Doita M, Masuda K. Cytokine Inhibitors Upregulate Extracellular Matrix Anabolism of Human Intervertebral Discs under Alginate Beads and Alginate-Embedded Explant Cultures. Int J Mol Sci 2023; 24:12336. [PMID: 37569715 PMCID: PMC10418414 DOI: 10.3390/ijms241512336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
We investigated the effects of the cytokine inhibitors IL-1 receptor antagonist (IL-1Ra) and soluble tumor necrosis factor receptor-1 (sTNFR1) on the extracellular matrix metabolism of human intervertebral discs (IVDs) and the roles of IL-1β and TNF in the homeostasis of IVD cells. The 1.2% alginate beads and the explants obtained from 35 human lumbar discs were treated with cytokine inhibitors. Extracellular matrix metabolism was evaluated by proteoglycan (PG) and collagen syntheses and IL-1β, TNF, and IL-6 expressions after three days of culture in the presence or absence of IL-1Ra, sTNFR1, and cycloheximide. Simultaneous treatment with IL-1Ra and sTNFR1 stimulated PG and collagen syntheses in the NP and AF cells and explants. The IL-1β concentration was significantly correlated to the relative increase in PG synthesis in AF explants after simultaneous cytokine inhibitor treatment. The relative increase in PG synthesis induced by simultaneous cytokine treatment was significantly higher in an advanced grade of MRI. Expressions of IL-1β and TNF were upregulated by each cytokine inhibitor, and simultaneous treatment suppressed IL-1β and TNF productions. In conclusion, IL-1Ra and sTNFR1 have the potential to increase PG and collagen synthesis in IVDs. IL-1β and TNF have a feedback pathway to maintain optimal expression, resulting in the control of homeostasis in IVD explants.
Collapse
Affiliation(s)
- Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
- Department of Orthopaedic Surgery, Rush University Medical Center, Orthopaedic Building, Suite 300, 1611 W Harrison Street, Chicago, IL 60612, USA;
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Howard S. An
- Department of Orthopaedic Surgery, Rush University Medical Center, Orthopaedic Building, Suite 300, 1611 W Harrison Street, Chicago, IL 60612, USA;
| | - Minoru Doita
- Department of Orthopedic Surgery, Iwate Medical University School of Medicine, 2-1-1, Idaidori, Yahaba-cho, Showa-gun, Iwate 028-3895, Japan;
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Dr. Mail Code 0863, La Jolla, CA 92093-0863, USA;
| |
Collapse
|
5
|
Ohnishi H, Zhang Z, Yurube T, Takeoka Y, Kanda Y, Tsujimoto R, Miyazaki K, Matsuo T, Ryu M, Kumagai N, Kuroshima K, Hiranaka Y, Kuroda R, Kakutani K. Anti-Inflammatory Effects of Adiponectin Receptor Agonist AdipoRon against Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:ijms24108566. [PMID: 37239908 DOI: 10.3390/ijms24108566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adiponectin, a hormone secreted by adipocytes, has anti-inflammatory effects and is involved in various physiological and pathological processes such as obesity, inflammatory diseases, and cartilage diseases. However, the function of adiponectin in intervertebral disc (IVD) degeneration is not well understood. This study aimed to elucidate the effects of AdipoRon, an agonist of adiponectin receptor, on human IVD nucleus pulposus (NP) cells, using a three-dimensional in vitro culturing system. This study also aimed to elucidate the effects of AdipoRon on rat tail IVD tissues using an in vivo puncture-induced IVD degeneration model. Analysis using quantitative polymerase chain reaction demonstrated the downregulation of gene expression of proinflammatory and catabolic factors by interleukin (IL)-1β (10 ng/mL) in human IVD NP cells treated with AdipoRon (2 μM). Furthermore, western blotting showed AdipoRon-induced suppression of p65 phosphorylation (p < 0.01) under IL-1β stimulation in the adenosine monophosphate-activated protein kinase (AMPK) pathway. Intradiscal administration of AdipoRon was effective in alleviating the radiologic height loss induced by annular puncture of rat tail IVD, histomorphological degeneration, production of extracellular matrix catabolic factors, and expression of proinflammatory cytokines. Therefore, AdipoRon could be a new therapeutic candidate for alleviating the early stage of IVD degeneration.
Collapse
Affiliation(s)
- Hiroki Ohnishi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Zhongying Zhang
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshiki Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yutaro Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryu Tsujimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kunihiko Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Tomoya Matsuo
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masao Ryu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naotoshi Kumagai
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kohei Kuroshima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshiaki Hiranaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
6
|
Diwan AD, Melrose J. Intervertebral disc degeneration and how it leads to low back pain. JOR Spine 2023; 6:e1231. [PMID: 36994466 PMCID: PMC10041390 DOI: 10.1002/jsp2.1231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this review was to evaluate data generated by animal models of intervertebral disc (IVD) degeneration published in the last decade and show how this has made invaluable contributions to the identification of molecular events occurring in and contributing to pain generation. IVD degeneration and associated spinal pain is a complex multifactorial process, its complexity poses difficulties in the selection of the most appropriate therapeutic target to focus on of many potential candidates in the formulation of strategies to alleviate pain perception and to effect disc repair and regeneration and the prevention of associated neuropathic and nociceptive pain. Nerve ingrowth and increased numbers of nociceptors and mechanoreceptors in the degenerate IVD are mechanically stimulated in the biomechanically incompetent abnormally loaded degenerate IVD leading to increased generation of low back pain. Maintenance of a healthy IVD is, thus, an important preventative measure that warrants further investigation to preclude the generation of low back pain. Recent studies with growth and differentiation factor 6 in IVD puncture and multi-level IVD degeneration models and a rat xenograft radiculopathy pain model have shown it has considerable potential in the prevention of further deterioration in degenerate IVDs, has regenerative properties that promote recovery of normal IVD architectural functional organization and inhibits the generation of inflammatory mediators that lead to disc degeneration and the generation of low back pain. Human clinical trials are warranted and eagerly anticipated with this compound to assess its efficacy in the treatment of IVD degeneration and the prevention of the generation of low back pain.
Collapse
Affiliation(s)
- Ashish D. Diwan
- Spine Service, Department of Orthopaedic Surgery, St. George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSydneyNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|