1
|
Casarrubios L, Cicuéndez M, Polo-Montalvo A, Feito MJ, Martínez-Del-Pozo Á, Arcos D, Duarte IF, Portolés MT. Metabolomic characterization of MC3T3-E1pre-osteoblast differentiation induced by ipriflavone-loaded mesoporous nanospheres. BIOMATERIALS ADVANCES 2025; 166:214085. [PMID: 39490191 DOI: 10.1016/j.bioadv.2024.214085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
This study reports on the metabolic changes accompanying the differentiation of MC3T3-E1 osteoprogenitor cells induced by mesoporous bioactive glass nanospheres (nMBG) loaded with ipriflavone (nMBG-IP). Ipriflavone (IP) is a synthetic isoflavone known for inhibiting bone resorption, maintaining bone density, and preventing osteoporosis. Delivering IP intracellularly is a promising strategy to modulate bone remodeling at significantly lower doses compared to free drug administration. Our results demonstrate that nMBG are efficiently internalized by pre-osteoblasts and, when loaded with IP, induce their differentiation. This differentiation process is accompanied by pronounced metabolic alterations, as monitored by NMR analysis of medium supernatants and cell extracts (exo- and endo-metabolomics, respectively). The main effects include an early-stage intensification of glycolysis and changes in several metabolic pathways, such as nucleobase metabolism, osmoregulatory and antioxidant pathways, and lipid metabolism. Notably, the metabolic impacts of nMBG-IP and free IP were very similar, whereas nMBG alone induced only mild changes in the intracellular metabolic profile without affecting the cells' consumption/secretion patterns or lipid composition. This finding indicates that the observed effects are primarily related to IP-induced differentiation and that nMBG nanospheres serve as convenient carriers with both efficient internalization and minimal metabolic impact. Furthermore, the observed link between pre-osteoblast differentiation and metabolism underscores the potential of utilizing metabolites and metabolic reprogramming as strategies to modulate the osteogenic process, for instance, in the context of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Mónica Cicuéndez
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Alberto Polo-Montalvo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, Madrid 28040, Spain
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, Madrid 28040, Spain.
| |
Collapse
|
2
|
Xiao H, Li W, Qin Y, Lin Z, Qian C, Wu M, Xia Y, Bai J, Geng D. Crosstalk between Lipid Metabolism and Bone Homeostasis: Exploring Intricate Signaling Relationships. RESEARCH (WASHINGTON, D.C.) 2024; 7:0447. [PMID: 39165638 PMCID: PMC11334918 DOI: 10.34133/research.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Bone is a dynamic tissue reshaped by constant bone formation and bone resorption to maintain its function. The skeletal system accounts for approximately 70% of the total volume of the body, and continuous bone remodeling requires quantities of energy and material consumption. Adipose tissue is the main energy storehouse of the body and has a strong adaptive capacity to participate in the regulation of various physiological processes. Considering that obesity and metabolic syndrome have become major public health challenges, while osteoporosis and osteoporotic fractures have become other major health problems in the aging population, it would be interesting to explore these 2 diseases together. Currently, an increasing number of researchers are focusing on the interactions between multiple tissue systems, i.e., multiple organs and tissues that are functionally coordinated together and pathologically pathologically interact with each other in the body. However, there is lack of detailed reviews summarizing the effects of lipid metabolism on bone homeostasis and the interactions between adipose tissue and bone tissue. This review provides a detailed summary of recent advances in understanding how lipid molecules and adipose-derived hormones affect bone homeostasis, how bone tissue, as a metabolic organ, affects lipid metabolism, and how lipid metabolism is regulated by bone-derived cytokines.
Collapse
Affiliation(s)
- Haixiang Xiao
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230022, China
| | - Wenming Li
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yi Qin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhixiang Lin
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chen Qian
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Mingzhou Wu
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yu Xia
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, Jingjiang People’s Hospital Affiliated to Yangzhou University, Jingjiang 214500, Jiangsu Province, China
| | - Dechun Geng
- Department of Orthopedics,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
3
|
Carneiro T, Batista de Carvalho ALM, Vojtek M, Laginha RC, Marques MPM, Diniz C, Gil AM. Pd 2Spermine as an Alternative Therapeutics for Cisplatin-Resistant Triple-Negative Breast Cancer. J Med Chem 2024; 67:6839-6853. [PMID: 38590144 PMCID: PMC11056979 DOI: 10.1021/acs.jmedchem.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Cisplatin (cDDP) resistance is a matter of concern in triple-negative breast cancer therapeutics. We measured the metabolic response of cDDP-sensitive (S) and -resistant (R) MDA-MB-231 cells to Pd2Spermine(Spm) (a possible alternative to cDDP) compared to cDDP to investigate (i) intrinsic response/resistance mechanisms and (ii) the potential cytotoxic role of Pd2Spm. Cell extracts were analyzed by untargeted nuclear magnetic resonance metabolomics, and cell media were analyzed for particular metabolites. CDDP-exposed S cells experienced enhanced antioxidant protection and small deviations in the tricarboxylic acid cycle (TCA), pyrimidine metabolism, and lipid oxidation (proposed cytotoxicity signature). R cells responded more strongly to cDDP, suggesting a resistance signature of activated TCA cycle, altered AMP/ADP/ATP and adenine/uracil fingerprints, and phospholipid biosynthesis (without significant antioxidant protection). Pd2Spm impacted more markedly on R/S cell metabolisms, inducing similarities to cDDP/S cells (probably reflecting high cytotoxicity) and strong additional effects indicative of amino acid depletion, membrane degradation, energy/nucleotide adaptations, and a possible beneficial intracellular γ-aminobutyrate/glutathione-mediated antioxidant mechanism.
Collapse
Affiliation(s)
- Tatiana
J. Carneiro
- Department
of Chemistry and CICECO − Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Molecular
Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- LAQV/REQUIMTE,
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of
Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Martin Vojtek
- LAQV/REQUIMTE,
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of
Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Raquel C. Laginha
- Molecular
Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria Paula M. Marques
- Molecular
Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department
of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE,
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of
Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department
of Chemistry and CICECO − Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Tarapongpun T, Onlamoon N, Tabu K, Chuthapisith S, Taga T. The optimized priming effect of FGF-1 and FGF-2 enhances preadipocyte lineage commitment in human adipose-derived mesenchymal stem cells. Genes Cells 2024; 29:231-253. [PMID: 38253356 DOI: 10.1111/gtc.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The cell-assisted lipotransfer technique, integrating adipose-derived mesenchymal stem cells (ADMSCs), has transformed lipofilling, enhancing fat graft viability. However, the multipotent nature of ADMSCs poses challenges. To improve safety and graft vitality and to reduce unwanted lineage differentiation, this study refines the methodology by priming ADMSCs into preadipocytes-unipotent, self-renewing cells. We explored the impact of fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), either alone or in combination, on primary human ADMSCs during the proliferative phase. FGF-2 emerged as a robust stimulator of cell proliferation, preserving stemness markers, especially when combined with EGF. Conversely, FGF-1, while not significantly affecting cell growth, influenced cell morphology, transitioning cells to a rounded shape with reduced CD34 expression. Furthermore, co-priming with FGF-1 and FGF-2 enhanced adipogenic potential, limiting osteogenic and chondrogenic tendencies, and possibly promoting preadipocyte commitment. These preadipocytes exhibited unique features: rounded morphology, reduced CD34, decreased preadipocyte factor 1 (Pref-1), and elevated C/EBPα and PPARγ, alongside sustained stemness markers (CD73, CD90, CD105). Mechanistically, FGF-1 and FGF-2 activated key adipogenic transcription factors-C/EBPα and PPARγ-while inhibiting GATA3 and Notch3, which are adipogenesis inhibitors. These findings hold the potential to advance innovative strategies for ADMSC-mediated lipofilling procedures.
Collapse
Affiliation(s)
- Tanakorn Tarapongpun
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nattawat Onlamoon
- Department of Research, Faculty of Medicine Siriraj Hospital, Siriraj Research Group in Immunobiology and Therapeutic Sciences, Mahidol University, Bangkok, Thailand
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Suebwong Chuthapisith
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Wu M, Du Y, Zhang C, Li Z, Li Q, Qi E, Ruan W, Feng S, Zhou H. Mendelian Randomization Study of Lipid Metabolites Reveals Causal Associations with Heel Bone Mineral Density. Nutrients 2023; 15:4160. [PMID: 37836445 PMCID: PMC10574167 DOI: 10.3390/nu15194160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Osteoporosis, which is a bone disease, is characterized by low bone mineral density and an increased risk of fractures. The heel bone mineral density is often used as a representative measure of overall bone mineral density. Lipid metabolism, which includes processes such as fatty acid metabolism, glycerol metabolism, inositol metabolism, bile acid metabolism, carnitine metabolism, ketone body metabolism, sterol and steroid metabolism, etc., may have an impact on changes in bone mineral density. While some studies have reported correlations between lipid metabolism and heel bone mineral density, the overall causal relationship between metabolites and heel bone mineral density remains unclear. OBJECTIVE to investigate the causal relationship between lipid metabolites and heel bone mineral density using two-sample Mendelian randomization analysis. METHODS Summary-level data from large-scale genome-wide association studies were extracted to identify genetic variants linked to lipid metabolite levels. These genetic variants were subsequently employed as instrumental variables in Mendelian randomization analysis to estimate the causal effects of each lipid metabolite on heel bone mineral density. Furthermore, metabolites that could potentially be influenced by causal relationships with bone mineral density were extracted from the KEGG and WikiPathways databases. The causal associations between these downstream metabolites and heel bone mineral density were then examined. Lastly, a sensitivity analysis was conducted to evaluate the robustness of the results and address potential sources of bias. RESULTS A total of 130 lipid metabolites were analyzed, and it was found that acetylcarnitine, propionylcarnitine, hexadecanedioate, tetradecanedioate, myo-inositol, 1-arachidonoylglycerophosphorine, 1-linoleoylglycerophoethanolamine, and epiandrosterone sulfate had a causal relationship with heel bone mineral density (p < 0.05). Furthermore, our findings also indicate an absence of causal association between the downstream metabolites associated with the aforementioned metabolites identified in the KEGG and WikiPathways databases and heel bone mineral density. CONCLUSION This work supports the hypothesis that lipid metabolites have an impact on bone health through demonstrating a causal relationship between specific lipid metabolites and heel bone mineral density. This study has significant implications for the development of new strategies to osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Mingxin Wu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Yufei Du
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Chi Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Zhen Li
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Qingyang Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Enlin Qi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Wendong Ruan
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Hengxing Zhou
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| |
Collapse
|
6
|
Rodrigues JA, Bispo DSC, Silva MG, Araújo R, Soares AMVM, Freitas R, Gil AM. Impact of Sea Warming and 17-α-Ethinylestradiol Exposure on the Lipid Metabolism of Ruditapes philippinarum Clams. Int J Mol Sci 2023; 24:ijms24119485. [PMID: 37298436 DOI: 10.3390/ijms24119485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This paper reports on an NMR metabolomics study of lipophilic extracts of Ruditapes philippinarum clams exposed to the hormonal contaminant 17-α-ethinylestradiol (EE2), at 17 °C and 21 °C. The results reveal that exposure at 17 °C triggers a weak response at low EE2 concentrations, suggestive of a slight increase in membrane rigidity, followed by lipid metabolic stability at higher EE2 concentrations. On the other hand, at 21 °C, lipid metabolism begins to respond at 125 ng/L EE2, with antioxidant docosahexaenoic acid (DHA) helping to tackle high-oxidative-stress conditions, in tandem with enhanced storage of triglycerides. Exposure to 625 ng/L EE2 (highest concentration) enhances phosphatidylcholine (PtdCho) and polyunsaturated fatty acid (PUFA) levels, their direct intercorrelation suggesting PUFA incorporation in new membrane phospholipids. This should lead to increased membrane fluidity, probably aided by a decrease in cholesterol. PUFA levels, considered a measure of membrane fluidity, were strongly (and positively) correlated to intracellular glycine levels, thus identifying glycine as the main osmolyte entering the cells under high stress. Membrane fluidity also seems to elicit the loss of taurine. This work contributes to the understanding of the mechanisms of response of R. philippinarum clams to EE2 in tandem with warming while unveiling novel potential markers of stress mitigation, namely high levels of PtdCho, PUFAs (or PtdCho/glycerophosphocholine and PtdCho/acetylcholine ratios) and linoleic acid and low PUFA/glycine ratios.
Collapse
Affiliation(s)
- João A Rodrigues
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Daniela S C Bispo
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica G Silva
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita Araújo
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M Gil
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Migdadi L, Sharar N, Jafar H, Telfah A, Hergenröder R, Wöhler C. Machine Learning in Automated Monitoring of Metabolic Changes Accompanying the Differentiation of Adipose-Tissue-Derived Human Mesenchymal Stem Cells Employing 1H- 1H TOCSY NMR. Metabolites 2023; 13:352. [PMID: 36984792 PMCID: PMC10055867 DOI: 10.3390/metabo13030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The ability to monitor the dynamics of stem cell differentiation is a major goal for understanding biochemical evolution pathways. Automating the process of metabolic profiling using 2D NMR helps us to understand the various differentiation behaviors of stem cells, and therefore sheds light on the cellular pathways of development, and enhances our understanding of best practices for in vitro differentiation to guide cellular therapies. In this work, the dynamic evolution of adipose-tissue-derived human Mesenchymal stem cells (AT-derived hMSCs) after fourteen days of cultivation, adipocyte and osteocyte differentiation, was inspected based on 1H-1H TOCSY using machine learning. Multi-class classification in addition to the novelty detection of metabolites was established based on a control hMSC sample after four days' cultivation and we successively detected the changes of metabolites in differentiated MSCs following a set of 1H-1H TOCSY experiments. The classifiers Kernel Null Foley-Sammon Transform and Kernel Density Estimation achieved a total classification error between 0% and 3.6% and false positive and false negative rates of 0%. This approach was successfully able to automatically reveal metabolic changes that accompanied MSC cellular evolution starting from their undifferentiated status to their prolonged cultivation and differentiation into adipocytes and osteocytes using machine learning supporting the research in the field of metabolic pathways of stem cell differentiation.
Collapse
Affiliation(s)
- Lubaba Migdadi
- Image Analysis Group, TU Dortmund, 44227 Dortmund, Germany
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
| | - Nour Sharar
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan
| | - Hanan Jafar
- Cell Therapy Center, University of Jordan, Amman 11942, Jordan
- Department of Anatomy and Histology, College of Medicine, University of Jordan, Amman 11942, Jordan
| | - Ahmad Telfah
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
- Nanotechnology Center, The University of Jordan, Amman 11942, Jordan
| | - Roland Hergenröder
- Leibniz-Institut für Analytische Wissenschaften—ISAS-e.V., 44139 Dortmund, Germany
| | | |
Collapse
|
8
|
Argentati C, Dominici F, Morena F, Rallini M, Tortorella I, Ferrandez-Montero A, Pellegrino RM, Ferrari B, Emiliani C, Lieblich M, Torre L, Martino S, Armentano I. Thermal treatment of magnesium particles in polylactic acid polymer films elicits the expression of osteogenic differentiation markers and lipidome profile remodeling in human adipose stem cells. Int J Biol Macromol 2022; 223:684-701. [PMID: 36356880 DOI: 10.1016/j.ijbiomac.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
The efficacy of polylactic acid (PLA)/Magnesium (Mg)-based materials for driving stem cells toward bone tissue engineering applications requires specific Mg surface properties to modulate the interface of stem cells with the film. Here, we have developed novel PLA/Mg-based composites and explored their osteogenic differentiation potential on human adipose stem cells (hASCs). Mg-particles/polymer interface was improved by two treatments: heating in oxidative atmosphere (TT) and surface modification with a compatibilizer (PEI). Different contents of Mg particles were dispersed in PLA and composite surface and bulk properties, protein adsorption, stem cell-PLA/Mg interactions, osteogenic markers expressions, and lipids composition profile were evaluated. Mg particles were uniformly distributed on the surface and in the bulk PLA polymer. Improved and modulated particle-polymer adhesion was observed in Mg particle-treated composites. After 21 days in canonical growth culture conditions, hASCs on PLA/MgTT displayed the highest expression of the general osteogenic markers, RUNX2, SSP1, and BGLAP genes, Alkaline Phosphatase, type I Collagen, Osteopontin, and Calcium deposits. Moreover, by LC/MS QTOF mass-spectrophotometry lipidomic analysis, we found in PLA/MgTT-cells, for the first time, a remodeling of the lipid classes composition associated with the osteogenic differentiation. We ascribed these results to MgTT characteristics, which improve Mg availability and composite osteoinductive performance.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Franco Dominici
- Department of Civil and Environmental Engineering (DICA), University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Marco Rallini
- Department of Civil and Environmental Engineering (DICA), University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Ana Ferrandez-Montero
- Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, c/ Kelsen 5, 28049 Madrid, Spain.
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Begoña Ferrari
- Instituto de Cerámica y Vidrio, CSIC, Campus de Cantoblanco, c/ Kelsen 5, 28049 Madrid, Spain.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; CEMIN, University of Perugia, 06122 Perugia, Italy
| | - Marcela Lieblich
- Department Physical Metallurgy, National Centre for Metallurgical Research (CENIM), CSIC, Avenida Gregorio del Amo 8, Madrid 28040, Spain
| | - Luigi Torre
- Department of Civil and Environmental Engineering (DICA), University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; CEMIN, University of Perugia, 06122 Perugia, Italy.
| | - Ilaria Armentano
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo 01100, Italy.
| |
Collapse
|
9
|
Bispo DSC, Jesus CSH, Romek K, Marques IMC, Oliveira MB, Mano JF, Gil AM. An Intracellular Metabolic Signature as a Potential Donor-Independent Marker of the Osteogenic Differentiation of Adipose Tissue Mesenchymal Stem Cells. Cells 2022; 11:cells11233745. [PMID: 36497004 PMCID: PMC9739047 DOI: 10.3390/cells11233745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
This paper describes an untargeted NMR metabolomics study to identify potential intracellular donor-dependent and donor-independent metabolic markers of proliferation and osteogenic differentiation of human adipose mesenchymal stem cells (hAMSCs). The hAMSCs of two donors with distinct proliferating/osteogenic characteristics were fully characterized regarding their polar endometabolome during proliferation and osteogenesis. An 18-metabolites signature (including changes in alanine, aspartate, proline, tyrosine, ATP, and ADP, among others) was suggested to be potentially descriptive of cell proliferation, independently of the donor. In addition, a set of 11 metabolites was proposed to compose a possible donor-independent signature of osteogenesis, mostly involving changes in taurine, glutathione, methylguanidine, adenosine, inosine, uridine, and creatine/phosphocreatine, choline/phosphocholine and ethanolamine/phosphocholine ratios. The proposed signatures were validated for a third donor, although they require further validation in a larger donor cohort. We believe that this proof of concept paves the way to exploit metabolic markers to monitor (and potentially predict) cell proliferation and the osteogenic ability of different donors.
Collapse
|