1
|
Sawada JI, Matsuno K, Ogo N, Asai A. Identification of antimitotic sulfonamides inhibiting chromosome congression. Biochem Pharmacol 2024; 232:116718. [PMID: 39701545 DOI: 10.1016/j.bcp.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
The discovery of new small-molecule inhibitors is essential to enhancing our understanding of biological events at the molecular level and driving advancements in drug discovery. Mitotic inhibitors have played a crucial role in development of anticancer drugs. Beyond traditional microtubule inhibitors, various inhibitors targeting specific mitotic factors have been developed. This study aimed to develop novel mitotic inhibitors targeting chromosome alignment. We established a cell-based screening method using Cell Division Cycle Associated 5 (CDCA5) and kinesin-5 as markers, designed to efficiently detect mitotic phenotypes characterized by aberrant bipolar spindles with some misaligned chromosomes. Through this screening, we identified CAIS-1, an aryl sulfonamide with unique antimitotic properties. CAIS-1 exhibits dual functionality by inhibiting chromosome congression at low concentrations and spindle microtubule formation at high concentrations, causing a concentration-dependent mitotic arrest, followed by apoptotic cell death. Mechanistic studies revealed that CAIS-1 directly acts on tubulin at high concentrations, thereby inhibiting tubulin polymerization in vitro. In contrast, at low concentrations, CAIS-1 functions through a mechanism distinct from GSK923295, a conventional chromosome congression inhibitor targeting Centromere-associated protein-E (CENP-E), highlighting its unique mode of action. Moreover, CAIS-2, a structural analog of CAIS-1, selectively inhibits chromosome congression without significantly affecting spindle microtubules. This observation suggests that CAIS-1 and CAIS-2 function as antimitotic sulfonamides with distinct targets beyond tubulin, thus offering additional biological potential of sulfonamide compounds. Together, CAIS-1 and CAIS-2 represent promising tools for providing new molecular insights into kinetochore function during mitosis and for exploring new approaches in anticancer drug development.
Collapse
Affiliation(s)
- Jun-Ichi Sawada
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Kenji Matsuno
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
2
|
Córdoba-Beldad CM, Grantham J. The CCTδ subunit of the molecular chaperone CCT is required for correct localisation of p150 Glued to spindle poles during mitosis. Eur J Cell Biol 2024; 103:151430. [PMID: 38897036 DOI: 10.1016/j.ejcb.2024.151430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Chaperonin Containing Tailless complex polypeptide 1 (CCT) is a molecular chaperone composed of eight distinct subunits that can exist as individual monomers or as components of a double oligomeric ring, which is essential for the folding of actin and tubulin and other substrates. Here we assess the role of CCT subunits in the context of cell cycle progression by individual subunit depletions upon siRNA treatment in mammalian cells. The depletion of individual CCT subunits leads to variation in the distribution of cell cycle phases and changes in mitotic index. Mitotic defects, such as unaligned chromosomes occur when CCTδ is depleted, concurrent with a reduction in spindle pole-localised p150Glued, a component of the dynactin complex and a binding partner of monomeric CCTδ. In CCTδ-depleted cells, changes in the elution profile of p150Glued are observed consistent with altered conformations and or assembly states with the dynactin complex. Addition of monomeric CCTδ, in the form of GFP-CCTδ, restores correct p150Glued localisation to the spindle poles and rescues the mitotic segregation defects that occur when CCTδ is depleted. This study demonstrates a requirement for CCTδ in its monomeric form for correct chromosome segregation via a mechanism that promotes the correct localisation of p150Glued, thus revealing further complexities to the interplay between CCT, tubulin folding and microtubule dynamics.
Collapse
Affiliation(s)
- Carmen M Córdoba-Beldad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden.
| |
Collapse
|
3
|
Chong MK, Rosas-Salvans M, Tran V, Dumont S. Chromosome size-dependent polar ejection force impairs mammalian mitotic error correction. J Cell Biol 2024; 223:e202310010. [PMID: 38727808 PMCID: PMC11090132 DOI: 10.1083/jcb.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/15/2024] Open
Abstract
Accurate chromosome segregation requires sister kinetochores to biorient, attaching to opposite spindle poles. To this end, the mammalian kinetochore destabilizes incorrect attachments and stabilizes correct ones, but how it discriminates between these is not yet clear. Here, we test the model that kinetochore tension is the stabilizing cue and ask how chromosome size impacts that model. We live image PtK2 cells, with just 14 chromosomes, widely ranging in size, and find that long chromosomes align at the metaphase plate later than short chromosomes. Enriching for errors and imaging error correction live, we show that long chromosomes exhibit a specific delay in correcting attachments. Using chromokinesin overexpression and laser ablation to perturb polar ejection forces, we find that chromosome size and force on arms determine alignment order. Thus, we propose a model where increased force on long chromosomes can falsely stabilize incorrect attachments, delaying their biorientation. As such, long chromosomes may require compensatory mechanisms for correcting errors to avoid chromosomal instability.
Collapse
Affiliation(s)
- Megan K. Chong
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Miquel Rosas-Salvans
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vanna Tran
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sophie Dumont
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
4
|
Chong MK, Rosas-Salvans M, Tran V, Dumont S. Chromosome size-dependent polar ejection force impairs mammalian mitotic error correction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562637. [PMID: 37905080 PMCID: PMC10614862 DOI: 10.1101/2023.10.16.562637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Accurate chromosome segregation requires sister kinetochores to biorient, attaching to opposite spindle poles. To this end, the mammalian kinetochore destabilizes incorrect attachments and stabilizes correct ones, but how it discriminates between these is not yet clear. Here, we test the model that kinetochore tension is the stabilizing cue and ask how chromosome size impacts that model. We live image PtK2 cells, with just 14 chromosomes, widely ranging in size, and find that long chromosomes align at the metaphase plate later than short chromosomes. Enriching for errors and imaging error correction live, we show that long chromosomes exhibit a specific delay in correcting attachments. Using chromokinesin overexpression and laser ablation to perturb polar ejection forces, we find that chromosome size and force on arms determine alignment order. Thus, we propose a model where increased force on long chromosomes can falsely stabilize incorrect attachments, delaying their biorientation. As such, long chromosomes may require compensatory mechanisms for correcting errors to avoid chromosomal instability.
Collapse
Affiliation(s)
- Megan K. Chong
- Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
| | - Miquel Rosas-Salvans
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
| | - Vanna Tran
- Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
- Department of Biochemistry & Biophysics, UCSF San Francisco 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Milagre I, Pereira C, Oliveira RA. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:11933. [PMID: 37569309 PMCID: PMC10418648 DOI: 10.3390/ijms241511933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Human pluripotent stem cells (PSCs), which include both embryonic and induced pluripotent stem cells, are widely used in fundamental and applied biomedical research. They have been instrumental for better understanding development and cell differentiation processes, disease origin and progression and can aid in the discovery of new drugs. PSCs also hold great potential in regenerative medicine to treat or diminish the effects of certain debilitating diseases, such as degenerative disorders. However, some concerns have recently been raised over their safety for use in regenerative medicine. One of the major concerns is the fact that PSCs are prone to errors in passing the correct number of chromosomes to daughter cells, resulting in aneuploid cells. Aneuploidy, characterised by an imbalance in chromosome number, elicits the upregulation of different stress pathways that are deleterious to cell homeostasis, impair proper embryo development and potentiate cancer development. In this review, we will summarize known molecular mechanisms recently revealed to impair mitotic fidelity in human PSCs and the consequences of the decreased mitotic fidelity of these cells. We will finish with speculative views on how the physiological characteristics of PSCs can affect the mitotic machinery and how their suboptimal mitotic fidelity may be circumvented.
Collapse
Affiliation(s)
- Inês Milagre
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | | | - Raquel A. Oliveira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
6
|
Bühler M, Fahrländer J, Sauter A, Becker M, Wistorf E, Steinfath M, Stolz A. GPER1 links estrogens to centrosome amplification and chromosomal instability in human colon cells. Life Sci Alliance 2022; 6:6/1/e202201499. [PMID: 36384894 PMCID: PMC9670797 DOI: 10.26508/lsa.202201499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
The role of the alternate G protein-coupled estrogen receptor 1 (GPER1) in colorectal cancer (CRC) development and progression is unclear, not least because of conflicting clinical and experimental evidence for pro- and anti-tumorigenic activities. Here, we show that low concentrations of the estrogenic GPER1 ligands, 17β-estradiol, bisphenol A, and diethylstilbestrol cause the generation of lagging chromosomes in normal colon and CRC cell lines, which manifest in whole chromosomal instability and aneuploidy. Mechanistically, (xeno)estrogens triggered centrosome amplification by inducing centriole overduplication that leads to transient multipolar mitotic spindles, chromosome alignment defects, and mitotic laggards. Remarkably, we could demonstrate a significant role of estrogen-activated GPER1 in centrosome amplification and increased karyotype variability. Indeed, both gene-specific knockdown and inhibition of GPER1 effectively restored normal centrosome numbers and karyotype stability in cells exposed to 17β-estradiol, bisphenol A, or diethylstilbestrol. Thus, our results reveal a novel link between estrogen-activated GPER1 and the induction of key CRC-prone lesions, supporting a pivotal role of the alternate estrogen receptor in colon neoplastic transformation and tumor progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ailine Stolz
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| |
Collapse
|
7
|
Klaasen SJ, Kops GJPL. Chromosome Inequality: Causes and Consequences of Non-Random Segregation Errors in Mitosis and Meiosis. Cells 2022; 11:3564. [PMID: 36428993 PMCID: PMC9688425 DOI: 10.3390/cells11223564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aneuploidy is a hallmark of cancer and a major cause of miscarriages in humans. It is caused by chromosome segregation errors during cell divisions. Evidence is mounting that the probability of specific chromosomes undergoing a segregation error is non-random. In other words, some chromosomes have a higher chance of contributing to aneuploid karyotypes than others. This could have important implications for the origins of recurrent aneuploidy patterns in cancer and developing embryos. Here, we review recent progress in understanding the prevalence and causes of non-random chromosome segregation errors in mammalian mitosis and meiosis. We evaluate its potential impact on cancer and human reproduction and discuss possible research avenues.
Collapse
Affiliation(s)
- Sjoerd J. Klaasen
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Geert J. P. L. Kops
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
8
|
Klaasen SJ, Truong MA, van Jaarsveld RH, Koprivec I, Štimac V, de Vries SG, Risteski P, Kodba S, Vukušić K, de Luca KL, Marques JF, Gerrits EM, Bakker B, Foijer F, Kind J, Tolić IM, Lens SMA, Kops GJPL. Nuclear chromosome locations dictate segregation error frequencies. Nature 2022; 607:604-609. [PMID: 35831506 PMCID: PMC9300461 DOI: 10.1038/s41586-022-04938-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/07/2022] [Indexed: 12/25/2022]
Abstract
Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis1-5. Selective pressures then shape distinct aneuploidy and rearrangement patterns-for example, in cancer6,7-but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing8 after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes9 and aneuploidies in early development10 occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development.
Collapse
Affiliation(s)
- Sjoerd J Klaasen
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - My Anh Truong
- Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Richard H van Jaarsveld
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | - Sippe G de Vries
- Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - Kim L de Luca
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Joana F Marques
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Elianne M Gerrits
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Bjorn Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Floris Foijer
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Jop Kind
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Susanne M A Lens
- Oncode Institute, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW (Royal Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|