1
|
Yu F, Hubrack S, Raynaud CM, Elmi A, Mackeh R, Agrebi N, Thareja G, Belkadi A, Al Saloos H, Ahmed AA, Purayil SC, Mohamoud YA, Suhre K, Abi Khalil C, Schmidt F, Lo B, Hassan A, Machaca K. Loss of the TRPM4 channel in humans causes immune dysregulation with defective monocyte migration. J Allergy Clin Immunol 2024; 154:792-806. [PMID: 38750824 DOI: 10.1016/j.jaci.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND TRPM4 is a broadly expressed, calcium-activated, monovalent cation channel that regulates immune cell function in mice and cell lines. Clinically, however, partial loss- or gain-of-function mutations in TRPM4 lead to arrhythmia and heart disease, with no documentation of immunologic disorders. OBJECTIVE To characterize functional cellular mechanisms underlying the immune dysregulation phenotype in a proband with a mutated TRPM4 gene. METHODS We employed a combination of biochemical, cell biological, imaging, omics analyses, flow cytometry, and gene editing approaches. RESULTS We report the first human cases to our knowledge with complete loss of the TRPM4 channel, leading to immune dysregulation with frequent bacterial and fungal infections. Single-cell and bulk RNA sequencing point to altered expression of genes affecting cell migration, specifically in monocytes. Inhibition of TRPM4 in T cells and the THP-1 monocyte cell line reduces migration. More importantly, primary T cells and monocytes from TRPM4 patients migrate poorly. Finally, CRISPR knockout of TRPM4 in THP-1 cells greatly reduces their migration potential. CONCLUSION Our results demonstrate that TRPM4 plays a critical role in regulating immune cell migration, leading to increased susceptibility to infections.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | | | | | - Asha Elmi
- Research Department, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY; Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Abdelaziz Belkadi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY; Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | | | - Saleema C Purayil
- Allergy & Immunology Division, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY; Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Charbel Abi Khalil
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar; Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Frank Schmidt
- Research Department, Sidra Medicine, Doha, Qatar; Department of Biochemistry, Weill Cornell Medicine, New York, NY
| | - Bernice Lo
- Research Department, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Amel Hassan
- Pediatric Allergy and Immunology Department, Sidra Medicine, Doha, Qatar.
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
2
|
Kappel S, Melek K, Ross-Kaschitza D, Hauert B, Gerber CE, Lochner M, Peinelt C. CBA (4-chloro-2-(2-chlorophenoxy)acetamido) benzoic acid) inhibits TMEM206 mediated currents and TMEM206 does not contribute to acid-induced cell death in colorectal cancer cells. Front Pharmacol 2024; 15:1369513. [PMID: 38515848 PMCID: PMC10955468 DOI: 10.3389/fphar.2024.1369513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Upon activation at low pH, TMEM206 conducts Cl- ions across plasma and vesicular membranes. In a (patho)physiological context, TMEM206 was reported to contribute to acid-induced cell death in neurons, kidney and cervical epithelial cells. We investigated the role of TMEM206 in acid-induced cell death in colorectal cancer cells. In addition, we studied CBA as a new small molecule inhibitor for TMEM206. Methods: The role of TMEM206 in acid-induced cell death was studied with CRISPR/Cas9-mediated knockout and FACS analysis. The pharmacology of TMEM206 was determined with the patch clamp technique. Results: In colorectal cancer cells, TMEM206 is not a critical mediator of acid-induced cell death. CBA is a small molecule inhibitor of TMEM206 (IC50 = 9.55 µM) at low pH, at pH 6.0 inhibition is limited. Conclusion: CBA demonstrates effective and specific inhibition of TMEM206; however, its inhibitory efficacy is limited at pH 6.0. Despite this limitation, CBA is a potent inhibitor for functional studies at pH 4.5 and may be a promising scaffold for the development of future TMEM206 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Richter P, Andersen G, Kahlenberg K, Mueller AU, Pirkwieser P, Boger V, Somoza V. Sodium-Permeable Ion Channels TRPM4 and TRPM5 are Functional in Human Gastric Parietal Cells in Culture and Modulate the Cellular Response to Bitter-Tasting Food Constituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4906-4917. [PMID: 38378185 PMCID: PMC10921469 DOI: 10.1021/acs.jafc.3c09085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Gastric parietal cells secrete chloride ions and protons to form hydrochloric acid. Besides endogenous stimulants, e.g., acetylcholine, bitter-tasting food constituents, e.g., caffeine, induce proton secretion via interaction with bitter taste receptors (TAS2Rs), leading to increased cytosolic Ca2+ and cAMP concentrations. We hypothesized TAS2R activation by bitter tastants to result in proton secretion via cellular Na+ influx mediated by transient receptor potential channels (TRP) M4 and M5 in immortalized human parietal HGT-1 cells. Using the food-derived TAS2R agonists caffeine and l-arginine, we demonstrate both bitter compounds to induce a TRPM4/M5-mediated Na+ influx, with EC50 values of 0.65 and 10.38 mM, respectively, that stimulates cellular proton secretion. Functional involvement of TAS2Rs in the caffeine-evoked effect was demonstrated by means of the TAS2R antagonist homoeriodictyol, and stably CRISPR-Cas9-edited TAS2R43ko cells. Building on previous results, these data further support the suitability of HGT-1 cells as a surrogate cell model for taste cells. In addition, TRPM4/M5 mediated a Na+ influx after stimulating HGT-1 cells with the acetylcholine analogue carbachol, indicating an interaction of the digestion-associated cholinergic pathway with a taste-signaling pathway in parietal cells.
Collapse
Affiliation(s)
- Phil Richter
- TUM
School of Life Sciences Weihenstephan, Technical
University of Munich, Alte Akademie 8, Freising 85354, Germany
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Gaby Andersen
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Kristin Kahlenberg
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Alina Ulrike Mueller
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Philip Pirkwieser
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Valerie Boger
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
| | - Veronika Somoza
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich, Lise-Meitner-Str.
34, Freising 85354, Germany
- Chair
of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, Freising 85354, Germany
- Department
of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), Vienna 1090, Austria
| |
Collapse
|
4
|
Chen J, Escoffre JM, Romito O, Iazourene T, Presset A, Roy M, Potier Cartereau M, Vandier C, Wang Y, Wang G, Huang P, Bouakaz A. Enhanced macromolecular substance extravasation through the blood-brain barrier via acoustic bubble-cell interactions. ULTRASONICS SONOCHEMISTRY 2024; 103:106768. [PMID: 38241945 PMCID: PMC10825521 DOI: 10.1016/j.ultsonch.2024.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/01/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis, regulates influx and efflux transport, and provides protection to the brain tissue. Ultrasound (US) and microbubble (MB)-mediated blood-brain barrier opening is an effective and safe technique for drug delivery in-vitro and in-vivo. However, the exact mechanism underlying this technique is still not fully elucidated. The aim of the study is to explore the contribution of transcytosis in the BBB transient opening using an in-vitro model of BBB. Utilizing a diverse set of techniques, including Ca2+ imaging, electron microscopy, and electrophysiological recordings, our results showed that the combined use of US and MBs triggers membrane deformation within the endothelial cell membrane, a phenomenon primarily observed in the US + MBs group. This deformation facilitates the vesicles transportation of 500 kDa fluorescent Dextran via dynamin-/caveolae-/clathrin- mediated transcytosis pathway. Simultaneously, we observed increase of cytosolic Ca2+ concentration, which is related with increased permeability of the 500 kDa fluorescent Dextran in-vitro. This was found to be associated with the Ca2+-protein kinase C (PKC) signaling pathway. The insights provided by the acoustically-mediated interaction between the microbubbles and the cells delineate potential mechanisms for macromolecular substance permeability.
Collapse
Affiliation(s)
- Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Zhejiang, China; Inserm UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Oliver Romito
- Inserm UMR 1069 Nutrition, Croissance et Cancer (N2C), Faculté de Médecine, Université de Tours, F-37032, France
| | - Tarik Iazourene
- Inserm UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Antoine Presset
- Inserm UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Roy
- Inserm UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Potier Cartereau
- Inserm UMR 1069 Nutrition, Croissance et Cancer (N2C), Faculté de Médecine, Université de Tours, F-37032, France
| | - Christophe Vandier
- Inserm UMR 1069 Nutrition, Croissance et Cancer (N2C), Faculté de Médecine, Université de Tours, F-37032, France
| | - Yahua Wang
- Inserm UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Zhejiang, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Zhejiang, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ayache Bouakaz
- Inserm UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
5
|
Takahashi Y, Fukuda H, Hayakawa A, Sano R, Kubo R, Kawabata-Iwakawa R, Nakajima T, Ishige T, Tokue H, Asano K, Seki T, Hsiao YY, Ishizawa F, Takei H, Kominato Y. Postmortem genetic analysis of 17 sudden cardiac deaths identified nonsense and frameshift variants in two cases of arrhythmogenic cardiomyopathy. Int J Legal Med 2023; 137:1927-1937. [PMID: 37328711 DOI: 10.1007/s00414-023-03037-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Sudden death, or unexpected natural death of a healthy individual, is a serious problem in all nations. Sudden cardiac death (SCD) mainly due to ischemic heart diseases is the top cause of sudden death. However, there are pathophysiological conditions, referred to as sudden arrhythmic death syndrome, in which no apparent lesion can be identified even after complete conventional or ordinary autopsy. While postmortem genetic analyses have accumulated evidence about underlying genetic abnormality in such cases, the precise relationships between genetic background and the phenotype have been largely elusive. In this study, a retrospective investigation of 17 autopsy cases in which lethal arrhythmia was suspected to be the cause of death was carried out. Genetic analysis focusing on 72 genes reported to be associated with cardiac dysfunctions was performed, in combination with detailed histopathological and postmortem imaging examination, and a family study. As a result, in two cases of suspected arrhythmogenic cardiomyopathy (ACM), we found a nonsense variant in PKP2 and frameshift variant in TRPM4 gene. In contrast, the other 15 cases showed no morphological changes in the heart despite the presence of a frameshift variant and several missense variants, leaving the clinical significance of these variants obscure. The findings of the present study suggest that nonsense and frameshift variants could be involved in the morphological abnormality in cases of SCD due to ACM, while missense variants alone rarely contribute to massive structural changes in the heart.
Collapse
Affiliation(s)
- Yoichiro Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Haruki Fukuda
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akira Hayakawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rieko Kubo
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Ishige
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroyuki Tokue
- Department of Diagnostic Radiology & Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuya Asano
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Tomohiro Seki
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yi-Yang Hsiao
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Fujio Ishizawa
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyuki Takei
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
- Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
6
|
Sakellakis M, Chalkias A. The Role οf Ion Channels in the Development and Progression of Prostate Cancer. Mol Diagn Ther 2023; 27:227-242. [PMID: 36600143 DOI: 10.1007/s40291-022-00636-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
Ion channels have major regulatory functions in living cells. Apart from their role in ion transport, they are responsible for cellular electrogenesis and excitability, and may also regulate tissue homeostasis. Although cancer is not officially classified as a channelopathy, it has been increasingly recognized that ion channel aberrations play an important role in virtually all cancer types. Ion channels can exert pro-tumorigenic activities due to genetic or epigenetic alterations, or as a response to molecular signals, such as growth factors, hormones, etc. Increasing evidence suggests that ion channels and pumps play a critical role in the regulation of prostate cancer cell proliferation, apoptosis evasion, migration, epithelial-to-mesenchymal transition, and angiogenesis. There is also evidence suggesting that ion channels might play a role in treatment failure in patients with prostate cancer. Hence, they represent promising targets for diagnosis, staging, and treatment, and their effects may be of particular significance for specific patient populations, including those undergoing anesthesia and surgery. In this article, the role of major types of ion channels involved in the development and progression of prostate cancer are reviewed. Identifying the underlying molecular mechanisms of the pro-tumorigenic effects of ion channels may potentially inform the development of novel therapeutic strategies to counter this malignancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Hellenic GU Cancer Group, Athens, Greece. .,Department of Medical Oncology, Metropolitan Hospital, 9 Ethnarchou Makariou, 18547, Athens, Greece.
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
7
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|