1
|
Mahmud S, Zheng C, Santiago FE, Zhang L, Robbins PD, Dong X. A machine learning approach identifies cellular senescence on transcriptome data of human cells in vitro. GeroScience 2024:10.1007/s11357-024-01485-6. [PMID: 39738795 DOI: 10.1007/s11357-024-01485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025] Open
Abstract
Although cellular senescence has been recognized as a hallmark of aging, it is challenging to detect senescence cells (SnCs) due to their high level of heterogeneity at the molecular level. Machine learning (ML) is likely an ideal approach to address this challenge because of its ability to recognize complex patterns that cannot be characterized by one or a few features, from high-dimensional data. To test this, we evaluated the performance of four ML algorithms including support vector machines (SVM), random forest (RF), decision tree (DT), and Soft Independent Modelling of Class Analogy (SIMCA), in distinguishing SnCs from controls based on bulk RNA sequencing data. The dataset includes 162 in vitro samples, covering three human cell types: fibroblasts, melanocytes, and keratinocytes, and three senescence inducers: irradiation, bleomycin treatment, and replication. Under tenfold and leave-one-out cross-validation, as well as independent dataset validation, all methods provided ~ 80% or higher accuracy, with SVM reaching over 99%. Similar accuracy was achieved using expert-curated gene lists, e.g., SenMayo and CellAge, instead of our algorithm-prioritized gene list using minimum redundancy-maximum relevance (mRMR). However, only a few genes overlapped between the gene sets, suggesting a wide impact of senescence on the transcriptome. Overall, our study demonstrated a proof-of-concept for identifying senescence using ML.
Collapse
Affiliation(s)
- Shamsed Mahmud
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Chen Zheng
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fernando E Santiago
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Abreu H, Lallukka M, Raineri D, Leigheb M, Ronga M, Cappellano G, Spriano S, Chiocchetti A. Evaluation of the immune response of peripheral blood mononuclear cells cultured on Ti6Al4V-ELI polished or etched surfaces. Front Bioeng Biotechnol 2024; 12:1458091. [PMID: 39439551 PMCID: PMC11493608 DOI: 10.3389/fbioe.2024.1458091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction While titanium and its alloys exhibit excellent biocompatibility and corrosion resistance, their polished surfaces can hinder fast and effective osseointegration and other biological processes, such as angiogenesis, due to their inert and hydrophobic properties. Despite being commonly used for orthopedic implants, research focuses on developing surface treatments to improve osseointegration, promoting cell adhesion and proliferation, as well as increasing protein adsorption capacity. This study explores a chemical treatment intended for titanium-based implants that enhances tissue integration without compromising the mechanical properties of the Ti6Al4V substrate. However, recognizing that inflammation contributes to nearly half of early implant failures, we assessed the impact of this treatment on T-cell viability, cytokine production, and phenotype. Methods Ti6Al4V with extra low interstitial (ELI) content discs were treated with hydrofluoric acid followed by a controlled oxidation step in hydrogen peroxide that creates a complex surface topography with micro- and nano-texture and modifies the chemistry of the surface oxide layer. The acid etched surface contains an abundance of hydroxyl groups, crucial for promoting bone growth and apatite precipitation, while also enabling further functionalization with biomolecules. Results While cell viability remained high in both groups, untreated discs triggered an increase in Th2 cells and a decrease of the Th17 subset. Furthermore, peripheral blood mononuclear cells exposed to untreated discs displayed a rise in various pro-inflammatory and anti-inflammatory cytokines compared to the control and treated groups. Conversely, the treated discs showed a similar profile to the control, both in terms of immune cell subset frequencies and cytokine secretion. Discussion The dysregulation of the cytokine profile upon contact with untreated Ti6Al4V-ELI discs, namely upregulation of IL-2 could be responsible for the decrease in Th17 frequency, and thus might contribute to implant-associated bacterial infection. Interestingly, the chemical treatment restores the immune response to levels comparable to the control condition, suggesting the treatment's potential to mitigate inflammation by enhancing biocompatibility.
Collapse
Affiliation(s)
- Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Mari Lallukka
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Massimiliano Leigheb
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Mario Ronga
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Spriano
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
3
|
Dooling LJ, Anlaş AA, Tobin MP, Ontko NM, Marchena T, Wang M, Andrechak JC, Discher DE. Clustered macrophages cooperate to eliminate tumors via coordinated intrudopodia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613918. [PMID: 39345601 PMCID: PMC11430028 DOI: 10.1101/2024.09.19.613918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Macrophages often pervade solid tumors, but their nearest neighbor organization is understudied and potentially enables key functions such as phagocytosis. Here, we observe dynamic macrophage clusters in tumors under conditions that maximize cancer cell phagocytosis and use reductionist approaches to uncover pathways to cluster formation and roles for tumor-intrusive pseudopodia, which we term 'intrudopodia'. Macrophage clusters form over hours on low- adhesion substrates after M1 polarization with interferons, including T cell-derived cytokines, and yet clusters prove fluid on timescales of minutes. Clusters also sort from M2 macrophages that disperse on the same substrates. M1 macrophages upregulate specific cell-cell adhesion receptors but suppress actomyosin contractility, and while both pathways contribute to cluster formation, decreased cortical tension was predicted to unleash pseudopodia. Macrophage neighbors in tumor spheroids indeed extend intrudopodia between adjacent cancer cell junctions - at least when phagocytosis conditions are maximized, and coordinated intrudopodia help detach and individualize cancer cells for rapid engulfment. Macrophage clusters thereby provide a cooperative advantage for phagocytosis to overcome solid tumor cohesion.
Collapse
|
4
|
Wang J, Li M, Wu W, Zhang H, Yang Y, Usman M, Aernouts B, Loor JJ, Xu C. Inflammatory Signaling via PEIZO1 Engages and Enhances the LPS-Mediated Apoptosis during Clinical Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20321-20330. [PMID: 39229907 DOI: 10.1021/acs.jafc.4c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bovine clinical mastitis is characterized by inflammation and immune responses, with apoptosis of mammary epithelial cells as a cellular reaction to infection. PIEZO1, identified as a mechanotransduction effector channel in nonruminant animals and sensitive to both mechanical stimuli or inflammatory signals like lipopolysaccharide (LPS). However, its role in inflammatory processes in cattle has not been well-documented. The aim of this study was to elucidate the in situ expression of PIEZO1 in bovine mammary gland and its potential involvement in clinical mastitis. We observed widespread distribution and upregulation of PIEZO1 in mammary epithelial cells in clinical mastitis cows and LPS-induced mouse models, indicating a conserved role across species. In vitro studies using mammary epithelial cells (MAC-T) revealed that LPS upregulates PIEZO1. Notably, the effects of PIEZO1 artificial activator Yoda1 increased apoptosis and NLRP3 expression, effects mitigated by PIEZO1 silencing or NLRP3 inhibition. In conclusion, the activation of the PIEZO1-NLRP3 pathway induces abnormal apoptosis in mammary epithelial cells, potentially serving as a regulatory mechanism to combat inflammatory responses to abnormal stimuli.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Ming Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Wenda Wu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - HuiJing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Yue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Muhammad Usman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Ben Aernouts
- Department of Biosystems, Division of Animal and Human Health Engineering, Faculty of Engineering Technology, KU Leuven University, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
5
|
Lith SC, Evers TMJ, Freire BM, van Tiel CM, Vos WG, Mashaghi A, de Vries CJM. Nuclear receptor Nur77 regulates immunomechanics of macrophages. Eur J Cell Biol 2024; 103:151419. [PMID: 38763048 DOI: 10.1016/j.ejcb.2024.151419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
Nuclear receptor Nur77 plays a pivotal role in immune regulation across various tissues, influencing pro-inflammatory signaling pathways and cellular metabolism. While cellular mechanics have been implicated in inflammation, the contribution of Nur77 to these mechanical processes remains elusive. Macrophages exhibit remarkable plasticity in their morphology and mechanics, enabling them to adapt and execute essential inflammatory functions, such as navigating through inflamed tissue and pathogen engulfment. However, the precise regulatory mechanisms governing these dynamic changes in macrophage mechanics during inflammation remain poorly understood. To establish the potential correlation of Nur77 with cellular mechanics, we compared bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Nur77-deficient (Nur77-KO) mice and employed cytoskeletal imaging, single-cell acoustic force spectroscopy (AFS), migration and phagocytosis assays, and RNA-sequencing. Our findings reveal that Nur77-KO BMDMs exhibit changes to their actin networks compared to WT BMDMs, which is associated with a stiffer and more rigid phenotype. Subsequent in vitro experiments validated our observations, showcasing that Nur77 deficiency leads to enhanced migration, reduced adhesion, and increased phagocytic activity. The transcriptomics data confirmed altered mechanics-related pathways in Nur77-deficient macrophage that are accompanied by a robust pro-inflammatory phenotype. Utilizing previously obtained ChIP-data, we revealed that Nur77 directly targets differentially expressed genes associated with cellular mechanics. In conclusion, while Nur77 is recognized for its role in reducing inflammation of macrophages by inhibiting the expression of pro-inflammatory genes, our study identifies a novel regulatory mechanism where Nur77 governs macrophage inflammation through the modulation of expression of genes involved in cellular mechanics. Our findings suggest that immune regulation by Nur77 may be partially mediated through alterations in cellular mechanics, highlighting a potential avenue for therapeutic targeting.
Collapse
Affiliation(s)
- Sanne C Lith
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, University of Amsterdam, The Netherlands; Amsterdam Institute for Immunology and Infectious diseases, University of Amsterdam, The Netherlands
| | - Tom M J Evers
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Leiden, The Netherlands
| | - Beatriz M Freire
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, University of Amsterdam, The Netherlands; Amsterdam Institute for Immunology and Infectious diseases, University of Amsterdam, The Netherlands
| | - Claudia M van Tiel
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, University of Amsterdam, The Netherlands; Amsterdam Institute for Immunology and Infectious diseases, University of Amsterdam, The Netherlands
| | - Winnie G Vos
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, University of Amsterdam, The Netherlands; Amsterdam Institute for Immunology and Infectious diseases, University of Amsterdam, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Leiden, The Netherlands.
| | - Carlie J M de Vries
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, University of Amsterdam, The Netherlands; Amsterdam Institute for Immunology and Infectious diseases, University of Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Vassileff N, Spiers JG, Bamford SE, Lowe RGT, Datta KK, Pigram PJ, Hill AF. Microglial activation induces nitric oxide signalling and alters protein S-nitrosylation patterns in extracellular vesicles. J Extracell Vesicles 2024; 13:e12455. [PMID: 38887871 PMCID: PMC11183937 DOI: 10.1002/jev2.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Neuroinflammation is an underlying feature of neurodegenerative conditions, often appearing early in the aetiology of a disease. Microglial activation, a prominent initiator of neuroinflammation, can be induced through lipopolysaccharide (LPS) treatment resulting in expression of the inducible form of nitric oxide synthase (iNOS), which produces nitric oxide (NO). NO post-translationally modifies cysteine thiols through S-nitrosylation, which can alter function of the target protein. Furthermore, packaging of these NO-modified proteins into extracellular vesicles (EVs) allows for the exertion of NO signalling in distant locations, resulting in further propagation of the neuroinflammatory phenotype. Despite this, the NO-modified proteome of activated microglial EVs has not been investigated. This study aimed to identify the protein post-translational modifications NO signalling induces in neuroinflammation. EVs isolated from LPS-treated microglia underwent mass spectral surface imaging using time of flight-secondary ion mass spectrometry (ToF-SIMS), in addition to iodolabelling and comparative proteomic analysis to identify post-translation S-nitrosylation modifications. ToF-SIMS imaging successfully identified cysteine thiol side chains modified through NO signalling in the LPS treated microglial-derived EV proteins. In addition, the iodolabelling proteomic analysis revealed that the EVs from LPS-treated microglia carried S-nitrosylated proteins indicative of neuroinflammation. These included known NO-modified proteins and those associated with LPS-induced microglial activation that may play an essential role in neuroinflammatory communication. Together, these results show activated microglia can exert broad NO signalling changes through the selective packaging of EVs during neuroinflammation.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Jereme G. Spiers
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralia
| | - Sarah E. Bamford
- Centre for Materials and Surface Science and Department of Mathematical and Physical SciencesLa Trobe UniversityBundooraVictoriaAustralia
| | - Rohan G. T. Lowe
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Keshava K. Datta
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Paul J. Pigram
- Centre for Materials and Surface Science and Department of Mathematical and Physical SciencesLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- The Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| |
Collapse
|
7
|
Pasamba EC, Orda MA, Villanueva BHA, Tsai PW, Tayo LL. Transcriptomic Analysis of Hub Genes Reveals Associated Inflammatory Pathways in Estrogen-Dependent Gynecological Diseases. BIOLOGY 2024; 13:397. [PMID: 38927277 PMCID: PMC11201105 DOI: 10.3390/biology13060397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Gynecological diseases are triggered by aberrant molecular pathways that alter gene expression, hormonal balance, and cellular signaling pathways, which may lead to long-term physiological consequences. This study was able to identify highly preserved modules and key hub genes that are mainly associated with gynecological diseases, represented by endometriosis (EM), ovarian cancer (OC), cervical cancer (CC), and endometrial cancer (EC), through the weighted gene co-expression network analysis (WGCNA) of microarray datasets sourced from the Gene Expression Omnibus (GEO) database. Five highly preserved modules were observed across the EM (GSE51981), OC (GSE63885), CC (GSE63514), and EC (GSE17025) datasets. The functional annotation and pathway enrichment analysis revealed that the highly preserved modules were heavily involved in several inflammatory pathways that are associated with transcription dysregulation, such as NF-kB signaling, JAK-STAT signaling, MAPK-ERK signaling, and mTOR signaling pathways. Furthermore, the results also include pathways that are relevant in gynecological disease prognosis through viral infections. Mutations in the ESR1 gene that encodes for ERα, which were shown to also affect signaling pathways involved in inflammation, further indicate its importance in gynecological disease prognosis. Potential drugs were screened through the Drug Repurposing Encyclopedia (DRE) based on the up-and downregulated hub genes, wherein a bacterial ribosomal subunit inhibitor and a benzodiazepine receptor agonist were the top candidates. Other drug candidates include a dihydrofolate reductase inhibitor, glucocorticoid receptor agonists, cholinergic receptor agonists, selective serotonin reuptake inhibitors, sterol demethylase inhibitors, a bacterial antifolate, and serotonin receptor antagonist drugs which have known anti-inflammatory effects, demonstrating that the gene network highlights specific inflammatory pathways as a therapeutic avenue in designing drug candidates for gynecological diseases.
Collapse
Affiliation(s)
- Elaine C. Pasamba
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Marco A. Orda
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Brian Harvey Avanceña Villanueva
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Lemmuel L. Tayo
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines; (E.C.P.); (M.A.O.); (B.H.A.V.)
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
8
|
Tapken I, Detering NT, Claus P. What could be the function of the spinal muscular atrophy-causing protein SMN in macrophages? Front Immunol 2024; 15:1375428. [PMID: 38863697 PMCID: PMC11165114 DOI: 10.3389/fimmu.2024.1375428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Spinal Muscular Atrophy (SMA), a neurodegenerative disorder, extends its impact beyond the nervous system. The central protein implicated in SMA, Survival Motor Neuron (SMN) protein, is ubiquitously expressed and functions in fundamental processes such as alternative splicing, translation, cytoskeletal dynamics and signaling. These processes are relevant for all cellular systems, including cells of the immune system such as macrophages. Macrophages are capable of modulating their splicing, cytoskeleton and expression profile in order to fulfil their role in tissue homeostasis and defense. However, less is known about impairment or dysfunction of macrophages lacking SMN and the subsequent impact on the immune system of SMA patients. We aimed to review the potential overlaps between SMN functions and macrophage mechanisms highlighting the need for future research, as well as the current state of research addressing the role of macrophages in SMA.
Collapse
Affiliation(s)
- Ines Tapken
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Nora T. Detering
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
9
|
Buisson J, Zhang X, Zambelli T, Lavalle P, Vautier D, Rabineau M. Reverse Mechanotransduction: Driving Chromatin Compaction to Decompaction Increases Cell Adhesion Strength and Contractility. NANO LETTERS 2024; 24:4279-4290. [PMID: 38546049 DOI: 10.1021/acs.nanolett.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mechanical extracellular signals elicit chromatin remodeling via the mechanotransduction pathway, thus determining cellular function. However, the reverse pathway is an open question: does chromatin remodeling shape cells, regulating their adhesion strength? With fluidic force microscopy, we can directly measure the adhesion strength of epithelial cells by driving chromatin compaction to decompaction with chromatin remodelers. We observe that chromatin compaction, induced by performing histone acetyltransferase inhibition or ATP depletion, leads to a reduction in nuclear volume, disrupting actin cytoskeleton and focal adhesion assembly, and ultimately decreases in cell adhesion strength and traction force. Conversely, when chromatin decompaction is drived by removing the remodelers, cells recover their original shape, adhesion strength, and traction force. During chromatin decompaction, cells use depolymerized proteins to restore focal adhesion assemblies rather than neo-synthesized cytoskeletal proteins. We conclude that chromatin remodeling shapes cells, regulating adhesion strength through a reverse mechanotransduction pathway from the nucleus to the cell surface involving RhoA activation.
Collapse
Affiliation(s)
- Julie Buisson
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| | - Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Philippe Lavalle
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
- SPARTHA Medical SAS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| | - Dominique Vautier
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| | - Morgane Rabineau
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| |
Collapse
|
10
|
Babaniamansour P, Jacho D, Teow A, Rabino A, Garcia-Mata R, Yildirim-Ayan E. Macrophage Mechano-Responsiveness Within Three-Dimensional Tissue Matrix upon Mechanotherapy-Associated Strains. Tissue Eng Part A 2024; 30:314-329. [PMID: 37725574 DOI: 10.1089/ten.tea.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Mechano-rehabilitation, also known as mechanotherapy, represents the forefront of noninvasive treatment for musculoskeletal (MSK) tissue disorders, encompassing conditions affecting tendons, cartilage, ligaments, and muscles. Recent emphasis has underscored the significance of macrophage presence in the healing of MSK tissues. However, a considerable gap still exists in comprehending how mechanical strains associated with mechanotherapy impact both the naïve and pro-inflammatory macrophage phenotypes within the three-dimensional (3D) tissue matrix, as well as whether the shift in macrophage phenotype is contingent on the mechanical strains inherent to mechanotherapy. In this study, we delineated alterations in mechano-adaptation and polarization of both naive and M1 macrophages within 3D matrices, elucidating their response to varying degrees of mechanical strain exposure (3%, 6%, and 12%). To evaluate macrophage mechano-adaptation and mechano-sensitivity within 3D collagen matrices under mechanical loading, we employed structural techniques (scanning electron microscopy, histology), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time polymerase chain reaction. Our data reveal that the response of macrophages to mechanical loading is not only contingent on their specific sub-phenotype but also varies with the amplitude of mechanical strain. Notably, although supra-mechanical loading (12% strain) was requisite to induce a phenotypic shift in naive (M0) macrophages, as little as 3% mechanical strain proved sufficient to prompt phenotypic alterations in pro-inflammatory (M1) macrophages. These findings pave the way for leveraging the macrophage mechanome in customized and targeted applications of mechanical strain within the mechano-therapeutic framework. Considering the prevalence of MSK tissue injuries and their profound societal and economic implications, the development of well-informed and effective clinical mechanotherapy modalities for MSK tissue healing becomes an imperative endeavor. Impact statement Mechanotherapy is a primary noninvasive treatment for musculoskeletal (MSK) tissue injuries, but the effect of mechanical strain on macrophage phenotypes is not fully understood. A recent study found that macrophage response to mechanical loading is both sub-phenotype specific and amplitude-dependent, with even small strains enough to induce phenotypic changes in pro-inflammatory macrophages. These findings could pave the way for using macrophage mechanome in targeted mechanotherapy applications for better MSK tissue healing.
Collapse
Affiliation(s)
| | - Diego Jacho
- Department of Bioengineering and University of Toledo, Toledo, Ohio, USA
| | - Ashley Teow
- Department of Bioengineering and University of Toledo, Toledo, Ohio, USA
| | - Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering and University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
11
|
Stinson MW, Liu S, Laurenson AJ, Rotty JD. Macrophage migration is differentially regulated by fibronectin and laminin through altered adhesion and myosin II localization. Mol Biol Cell 2024; 35:ar22. [PMID: 38088893 PMCID: PMC10881148 DOI: 10.1091/mbc.e23-04-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Macrophages are indispensable for proper immune surveillance and inflammatory regulation. They also exhibit dramatic phenotypic plasticity and are highly responsive to their local microenvironment, which includes the extracellular matrix (ECM). This work demonstrates that two fibrous ECM glycoproteins, fibronectin (FN) and laminin (LAM), elicit distinct morphological and migratory responses from macrophages in two-dimensional environments. LAM 111 inhibits macrophage cell spreading, but drives them to migrate rapidly and less persistently compared with cells on FN. Differential integrin engagement and ROCK/myosin II organization helps explain why macrophages alter their morphology and migration character on these two ECM components. This study also demonstrates that LAM 111 exerts a suppressive effect toward FN, as macrophages plated on a LAM/FN mixture adopt a morphology and migratory character almost identical to LAM alone. This suggests that distinct responses can be initiated downstream of receptor-ECM engagement, and that one component of the microenvironment may affect the cell's ability to sense another. Overall, macrophages appear intrinsically poised to rapidly switch between distinct migratory characters based on their ECM environments. The role of ECM composition in dictating motile and inflammatory responses in three-dimensional and in vivo contexts warrants further study.
Collapse
Affiliation(s)
- Matthew W. Stinson
- Uniformed Services University of the Health Sciences, Department of Biochemistry, Bethesda, MD 20814
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Sophia Liu
- Uniformed Services University of the Health Sciences, Department of Biochemistry, Bethesda, MD 20814
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Alexander J. Laurenson
- Uniformed Services University of the Health Sciences, Department of Biochemistry, Bethesda, MD 20814
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Jeremy D. Rotty
- Uniformed Services University of the Health Sciences, Department of Biochemistry, Bethesda, MD 20814
| |
Collapse
|
12
|
Zhang SN, Liu Q, Li XZ, Yang WD, Zhou Y. Sophora tonkinensis and active compounds inhibit mitochondrial impairments, inflammation, and LDLR deficiency in myocardial ischemia mice through regulating the vesicle-mediated transport pathway. Fitoterapia 2024; 172:105756. [PMID: 38007052 DOI: 10.1016/j.fitote.2023.105756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Ancient Chinese medicine literature and modern pharmacological studies show that Sophora tonkinensis Gagnep. (ST) has a protective effect on the heart. A biolabel research based on omics and bioinformatics and experimental validation were used to explore the application value of ST in the treatment of heart diseases. Therapeutic potential, mechanism of action, and material basis of ST in treating heart diseases were analyzed by proteomics, metabolomics, bioinformatics, and molecular docking. Cardioprotective effects and mechanisms of ST and active compounds were verified by echocardiography, HE and Masson staining, biochemical analysis, and ELISA in the isoproterenol hydrochloride-induced myocardial ischemia (MI) mice model. The biolabel research suggested that the therapeutic potential of ST for MI may be particularly significant among the heart diseases it may treat. In the isoprenaline hydrochloride-induced MI mice model, ST and its five active compounds (caffeic acid, gallic acid, betulinic acid, esculetin, and cinnamic acid) showed significant protective effects against echocardiographic changes and histopathological damages of the ischemic myocardial tissue. Meanwhile, they showed a tendency to correct mitochondrial structure and function damage and the abnormal expression of 12 biolables (DCTN1, DCTN3, and SCARB2, etc.) in the vesicle-mediated transport pathway, inflammatory cytokines (IL-1β, IL-6, and IL-10, etc.), and low density lipoprotein receptor (LDLR). The biolabel research identifies a new application value of ST in the treatment of heart diseases. ST and its active compounds inhibit mitochondrial impairments, inflammation, and LDLR deficiency through regulating the vesicle-mediated transport pathway, thus achieving the purpose of treating MI.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, 550025, PR China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, 550025, PR China.
| | - Wu-De Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, 550025, PR China.
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, 550025, PR China.
| |
Collapse
|
13
|
Zou H, Zhang B, Liang H, Li C, Chen J, Wu Y. Defence mechanisms of Pinctada fucata martensii to Vibrio parahaemolyticus infection: Insights from proteomics and metabolomics. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109204. [PMID: 37931889 DOI: 10.1016/j.fsi.2023.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Survival of pearl oysters is not only challenged by coastal pollution, but also pathogen infection that may eventually incur substantial economic losses in the pearl farming industry. Yet, whether pearl oysters can defend themselves against pathogen infection through molecular mechanisms remains largely unexplored. By using iTRAQ proteomic and metabolomic analyses, we analysed the proteins and metabolites in the serum of pearl oysters (Pinctada fucata martensii) when stimulated by pathogenic bacteria (Vibrio parahaemolyticus). Proteomic results found that a total of 2,242 proteins were identified in the experimental (i.e., Vibrio-stimulated) and control groups, where 166 of them were differentially expressed (120 upregulated and 46 downregulated in the experimental group). Regarding the immune response enrichment results, the pathway of signal transduction was significantly enriched, such as cytoskeleton and calcium signalling pathways. Proteins, including cathepsin L, heat shock protein 20, myosin and astacin-like protein, also contributed to the immune response of oysters. Pathogen stimulation also altered the metabolite profile of oysters, where 49 metabolites associated with metabolism of energy, fatty acids and amino acids were found. Integrated analysis suggests that the oysters could respond to pathogen infection by coordinating multiple cellular processes. Thus, the proteins and metabolites identified herein not only represent valuable genetic resources for developing molecular biomarkers and genetic breeding research, but also open new avenues for studies on the molecular defence mechanisms of pearl oysters to pathogen infection.
Collapse
Affiliation(s)
- Hexin Zou
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Chaojie Li
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Jie Chen
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Yifan Wu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
14
|
Iacoponi F, Cafarelli A, Fontana F, Pratellesi T, Dumont E, Barravecchia I, Angeloni D, Ricotti L. Optimal low-intensity pulsed ultrasound stimulation for promoting anti-inflammatory effects in macrophages. APL Bioeng 2023; 7:016114. [PMID: 36968453 PMCID: PMC10036142 DOI: 10.1063/5.0137881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
In this paper, we stimulated M1-like macrophages (obtained from U937 cells) with low-intensity pulsed ultrasound (LIPUS) to lower pro-inflammatory cytokine production. A systematic screening of different frequencies, intensities, duty cycles, and exposure times was performed. The optimal stimulation conditions leading to a marked decrease in the release of inflammatory cytokines were determined to be 38 kHz, 250 mW/cm2, 20%, and 90 min, respectively. Using these parameters, we verified that up to 72 h LIPUS did not affect cell viability, resulting in an increase in metabolic activity and in a reduction of reactive oxygen species (ROS) production. Moreover, we found that two mechanosensitive ion channels (PIEZO1 and TRPV1) were involved in the LIPUS-mediated cytokine release modulation. We also assessed the role of the nuclear factor κB (NF-κB) signaling pathway and observed an enhancement of actin polymerization. Finally, transcriptomic data suggested that the bioeffects of LIPUS treatment occur through the modulation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivana Barravecchia
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | | | | |
Collapse
|
15
|
Dragon AH, Rowe CJ, Rhodes AM, Pak OL, Davis TA, Ronzier E. Systematic Identification of the Optimal Housekeeping Genes for Accurate Transcriptomic and Proteomic Profiling of Tissues following Complex Traumatic Injury. Methods Protoc 2023; 6:mps6020022. [PMID: 36961042 PMCID: PMC10037587 DOI: 10.3390/mps6020022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Trauma triggers critical molecular and cellular signaling cascades that drive biological outcomes and recovery. Variations in the gene expression of common endogenous reference housekeeping genes (HKGs) used in data normalization differ between tissue types and pathological states. Systematically, we investigated the gene stability of nine HKGs (Actb, B2m, Gapdh, Hprt1, Pgk1, Rplp0, Rplp2, Tbp, and Tfrc) from tissues prone to remote organ dysfunction (lung, liver, kidney, and muscle) following extremity trauma. Computational algorithms (geNorm, Normfinder, ΔCt, BestKeeper, RefFinder) were applied to estimate the expression stability of each HKG or combinations of them, within and between tissues, under both steady-state and systemic inflammatory conditions. Rplp2 was ranked as the most suitable in the healthy and injured lung, kidney, and skeletal muscle, whereas Rplp2 and either Hprt1 or Pgk1 were the most suitable in the healthy and injured liver, respectively. However, the geometric mean of the three most stable genes was deemed the most stable internal reference control. Actb and Tbp were the least stable in normal tissues, whereas Gapdh and Tbp were the least stable across all tissues post-trauma. Ct values correlated poorly with the translation from mRNA to protein. Our results provide a valuable resource for the accurate normalization of gene expression in trauma-related experiments.
Collapse
Affiliation(s)
- Andrea H Dragon
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Alisha M Rhodes
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Olivia L Pak
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
| | - Elsa Ronzier
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 2081, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| |
Collapse
|
16
|
Morphological Evidence for Novel Roles of Microtubules in Macrophage Phagocytosis. Int J Mol Sci 2023; 24:ijms24021373. [PMID: 36674886 PMCID: PMC9866147 DOI: 10.3390/ijms24021373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Although the phagocytic activity of macrophages has long been studied, the involvement of microtubules in the process is not well understood. In this study, we improved the fixation protocol and revealed a dynamically rearranging microtubule network in macrophages, consisting of a basal meshwork, thick bundles at the cell edge, and astral microtubules. Some astral microtubules extended beneath the cell cortex and continued to form bundles at the cell edge. These microtubule assemblies were mutually exclusive of actin accumulation during membrane ruffling. Although the stabilization of microtubules with paclitaxel did not affect the resting stage of the macrophages, it reduced the phagocytic activity and membrane ruffling of macrophages activated with serum-MAF, which induced rapid phagocytosis. In contrast, the destabilization of microtubules with nocodazole enhanced membrane ruffling and the internalization of phagocytic targets suggesting an inhibitory effect of the microtubule network on the remodeling of the actin network. Meanwhile, the microtubule network was necessary for phagosome maturation. Our detailed analyses of cytoskeletal filaments suggest a phagocytosis control system involving Ca2+ influx, the destabilization of microtubules, and activation of actin network remodeling, followed by the translocation and acidification of phagosomes on the microtubule bundles.
Collapse
|
17
|
Bratengeier C, Bakker AD, Liszka A, Schilcher J, Fahlgren A. The release of osteoclast-stimulating factors on supraphysiological loading by osteoprogenitors coincides with expression of genes associated with inflammation and cytoskeletal arrangement. Sci Rep 2022; 12:21578. [PMID: 36517534 PMCID: PMC9751069 DOI: 10.1038/s41598-022-25567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Supraphysiological loading induced by unstable orthopedic implants initiates osteoclast formation, which results in bone degradation. We aimed to investigate which mechanosensitive cells in the peri-implant environment produce osteoclast-stimulating factors and how the production of these factors is stimulated by supraphysiological loading. The release of osteoclast-stimulating factors by different types of isolated bone marrow-derived hematopoietic and mesenchymal stem cells from six osteoarthritic patients was analyzed after one hour of supraphysiological loading (3.0 ± 0.2 Pa, 1 Hz) by adding their conditioned medium to osteoclast precursors. Monocytes produced factors that enhanced osteoclastogenesis by 1.6 ± 0.07-fold and mesenchymal stem cells by 1.4 ± 0.07-fold. Medium from osteoprogenitors and pre-osteoblasts enhanced osteoclastogenesis by 1.3 ± 0.09-fold and 1.4 ± 0.03-fold, respectively, where medium from four patients elicited a response and two did not. Next generation sequencing analysis of osteoprogenitors revealed that genes encoding for inflammation-related pathways and cytoskeletal rearrangements were regulated differently between responders and non-responders. Our data suggest that released osteoclast-stimulating soluble factors by progenitor cells in the bone marrow after supraphysiological loading may be related to cytoskeletal arrangement in an inflammatory environment. This connection could be relevant to better understand the aseptic loosening process of orthopedic implants.
Collapse
Affiliation(s)
- Cornelia Bratengeier
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden.
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Aneta Liszka
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Jörg Schilcher
- Department of Orthopedics and Department of Biomedical and Clinical Sciences, Faculty of Health Sciences and the Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Anna Fahlgren
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
An R. MRTF may be the missing link in a multiscale mechanobiology approach toward macrophage dysfunction in space. Front Cell Dev Biol 2022; 10:997365. [PMID: 36172272 PMCID: PMC9510870 DOI: 10.3389/fcell.2022.997365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages exhibit impaired phagocytosis, adhesion, migration, and cytokine production in space, hindering their ability to elicit immune responses. Considering that the combined effect of spaceflight microgravity and radiation is multiscale and multifactorial in nature, it is expected that contradictory findings are common in the field. This theory paper reanalyzes research on the macrophage spaceflight response across multiple timescales from seconds to weeks, and spatial scales from the molecular, intracellular, extracellular, to the physiological. Key findings include time-dependence of both pro-inflammatory activation and integrin expression. Here, we introduce the time-dependent, intracellular localization of MRTF-A as a hypothetical confounder of macrophage activation. We discuss the mechanosensitive MRTF-A/SRF pathway dependence on the actin cytoskeleton/nucleoskeleton, microtubules, membrane mechanoreceptors, hypoxia, oxidative stress, and intracellular/extracellular crosstalk. By adopting a multiscale perspective, this paper provides the first mechanistic answer for a three-decade-old question regarding impaired cytokine secretion in microgravity—and strengthens the connection between the recent advances in mechanobiology, microgravity, and the spaceflight immune response. Finally, we hypothesize MRTF involvement and complications in treating spaceflight-induced cardiovascular, skeletal, and immune disease.
Collapse
Affiliation(s)
- Rocky An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
- *Correspondence: Rocky An,
| |
Collapse
|