1
|
Nordmann TM, Anderton H, Hasegawa A, Schweizer L, Zhang P, Stadler PC, Sinha A, Metousis A, Rosenberger FA, Zwiebel M, Satoh TK, Anzengruber F, Strauss MT, Tanzer MC, Saito Y, Gong T, Thielert M, Kimura H, Silke N, Rodriguez EH, Restivo G, Nguyen HH, Gross A, Feldmeyer L, Joerg L, Levesque MP, Murray PJ, Ingen-Housz-Oro S, Mund A, Abe R, Silke J, Ji C, French LE, Mann M. Spatial proteomics identifies JAKi as treatment for a lethal skin disease. Nature 2024:10.1038/s41586-024-08061-0. [PMID: 39415009 DOI: 10.1038/s41586-024-08061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/17/2024] [Indexed: 10/18/2024]
Abstract
Toxic epidermal necrolysis (TEN) is a fatal drug-induced skin reaction triggered by common medications and is an emerging public health issue1-3. Patients with TEN undergo severe and sudden epidermal detachment caused by keratinocyte cell death. Although molecular mechanisms that drive keratinocyte cell death have been proposed, the main drivers remain unknown, and there is no effective therapy for TEN4-6. Here, to systematically map molecular changes that are associated with TEN and identify potential druggable targets, we utilized deep visual proteomics, which provides single-cell-based, cell-type-resolution proteomics7,8. We analysed formalin-fixed, paraffin-embedded archived skin tissue biopsies of three types of cutaneous drug reactions with varying severity and quantified more than 5,000 proteins in keratinocytes and skin-infiltrating immune cells. This revealed a marked enrichment of type I and type II interferon signatures in the immune cell and keratinocyte compartment of patients with TEN, as well as phosphorylated STAT1 activation. Targeted inhibition with the pan-JAK inhibitor tofacitinib in vitro reduced keratinocyte-directed cytotoxicity. In vivo oral administration of tofacitinib, baricitinib or the JAK1-specific inhibitors abrocitinib or upadacitinib ameliorated clinical and histological disease severity in two distinct mouse models of TEN. Crucially, treatment with JAK inhibitors (JAKi) was safe and associated with rapid cutaneous re-epithelialization and recovery in seven patients with TEN. This study uncovers the JAK/STAT and interferon signalling pathways as key pathogenic drivers of TEN and demonstrates the potential of targeted JAKi as a curative therapy.
Collapse
Affiliation(s)
- Thierry M Nordmann
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
| | - Holly Anderton
- Inflammation division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Lisa Schweizer
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Peng Zhang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Pia-Charlotte Stadler
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Ankit Sinha
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Metousis
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian A Rosenberger
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maximilian Zwiebel
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Florian Anzengruber
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Internal Medicine, Division of Dermatology, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Maximilian T Strauss
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Maria C Tanzer
- Inflammation division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Advanced Technology and Biology division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Yuki Saito
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ting Gong
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Marvin Thielert
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Haruna Kimura
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Natasha Silke
- Inflammation division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Edwin H Rodriguez
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hong Ha Nguyen
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Annette Gross
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laurence Feldmeyer
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lukas Joerg
- Division of Allergology and Clinical Immunology, Department of Pneumology, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter J Murray
- Immunoregulation Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Andreas Mund
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - John Silke
- Inflammation division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, Fujian Medical University, Fuzhou, China.
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry, Martinsried, Germany.
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| |
Collapse
|
2
|
Wu Y, Wang C, Fan X, Ma Y, Liu Z, Ye X, Shen C, Wu C. The impact of induced pluripotent stem cells in animal conservation. Vet Res Commun 2024; 48:649-663. [PMID: 38228922 DOI: 10.1007/s11259-024-10294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
It is widely acknowledged that we are currently facing a critical tipping point with regards to global extinction, with human activities driving us perilously close to the brink of a devastating sixth mass extinction. As a promising option for safeguarding endangered species, induced pluripotent stem cells (iPSCs) hold great potential to aid in the preservation of threatened animal populations. For endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni), supply of embryos is often limited. After the death of the last male in 2019, only two females remained in the world. IPSC technology offers novel approaches and techniques for obtaining pluripotent stem cells (PSCs) from rare and endangered animal species. Successful generation of iPSCs circumvents several bottlenecks that impede the development of PSCs, including the challenges associated with establishing embryonic stem cells, limited embryo sources and immune rejection following embryo transfer. To provide more opportunities and room for growth in our work on animal welfare, in this paper we will focus on the progress made with iPSC lines derived from endangered and extinct species, exploring their potential applications and limitations in animal welfare research.
Collapse
Affiliation(s)
- Yurou Wu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chengwei Wang
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xinyun Fan
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yuxiao Ma
- Department of Biology, New York University, New York, NY, USA
| | - Zibo Liu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xun Ye
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chongyang Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
- Sichuan Engineering Research Center for Endangered Medicinal Animals, Chengdu, China.
| |
Collapse
|
3
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|