1
|
Lin YH, Shih YH, Yap YV, Chen YW, Kuo HL, Liu TY, Hsu LJ, Kuo YM, Chang NS. Zfra Inhibits the TRAPPC6AΔ-Initiated Pathway of Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314510. [PMID: 36498839 PMCID: PMC9739312 DOI: 10.3390/ijms232314510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
When WWOX is downregulated in middle age, aggregation of a protein cascade, including TRAPPC6AΔ (TPC6AΔ), TIAF1, and SH3GLB2, may start to occur, and the event lasts more than 30 years, which results in amyloid precursor protein (APP) degradation, amyloid beta (Aβ) generation, and neurodegeneration, as shown in Alzheimer's disease (AD). Here, by treating neuroblastoma SK-N-SH cells with neurotoxin MPP+, upregulation and aggregation of TPC6AΔ, along with aggregation of TIAF1, SH3GLB2, Aβ, and tau, occurred. MPP+ is an inducer of Parkinson's disease (PD), suggesting that TPC6AΔ is a common initiator for AD and PD pathogenesis. Zfra, a 31-amino-acid zinc finger-like WWOX-binding protein, is known to restore memory deficits in 9-month-old triple-transgenic (3xTg) mice by blocking the aggregation of TPC6AΔ, SH3GLB2, tau, and amyloid β, as well as inflammatory NF-κB activation. The Zfra4-10 peptide exerted a strong potency in preventing memory loss during the aging of 3-month-old 3xTg mice up to 9 months, as determined by a novel object recognition task (ORT) and Morris water maize analysis. Compared to age-matched wild type mice, 11-month-old Wwox heterozygous mice exhibited memory loss, and this correlates with pT12-WWOX aggregation in the cortex. Together, aggregation of pT12-WWOX may link to TPC6AΔ aggregation for AD progression, with TPC6AΔ aggregation being a common initiator for AD and PD progression.
Collapse
Affiliation(s)
- Yu-Hao Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yao-Hsiang Shih
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| | - Ye Vone Yap
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-Wei Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiang-Lin Kuo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Yun Liu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404333, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5268)
| |
Collapse
|