1
|
Morales-Pacheco M, Valenzuela-Mayen M, Gonzalez-Alatriste AM, Mendoza-Almanza G, Cortés-Ramírez SA, Losada-García A, Rodríguez-Martínez G, González-Ramírez I, Maldonado-Lagunas V, Vazquez-Santillan K, González-Covarrubias V, Pérez-Plasencia C, Rodríguez-Dorantes M. The role of platelets in cancer: from their influence on tumor progression to their potential use in liquid biopsy. Biomark Res 2025; 13:27. [PMID: 39934930 DOI: 10.1186/s40364-025-00742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Platelets, anucleate blood cells essential for hemostasis, are increasingly recognized for their role in cancer, challenging the traditional notion of their sole involvement in blood coagulation. It has been demonstrated that platelets establish bidirectional communication with tumor cells, contributing to tumor progression and metastasis through diverse molecular mechanisms such as modulation of proliferation, angiogenesis, epithelial-mesenchymal transition, resistance to anoikis, immune evasion, extravasation, chemoresistance, among other processes. Reciprocally, cancer significantly alters platelets in their count and composition, including mRNA, non-coding RNA, proteins, and lipids, product of both internal synthesis and the uptake of tumor-derived molecules. This phenomenon gives rise to tumor-educated platelets (TEPs), which are emerging as promising tools for the development of liquid biopsies. In this review, we provide a detailed overview of the dynamic roles of platelets in tumor development and progression as well as their use in diagnosis and prognosis. We also provide our view on current limitations, challenges and future research areas, including the need to design more efficient strategies for their isolation and analysis, as well as the validation of their sensitivity and specificity through large-scale and rigorous clinical trials. This research will not only enable the evaluation of their clinical viability but could also open new opportunities to enhance diagnostic accuracy and develop personalized treatments in oncology.
Collapse
Affiliation(s)
- Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | - Miguel Valenzuela-Mayen
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | | | - Gretel Mendoza-Almanza
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Sergio A Cortés-Ramírez
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Alberto Losada-García
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
- Laboratorio de Investigación en Patógenos Respiratorios y Producción de Biológicos, Hospital Infantil de México Federico Gómez, Mexico City, 14610, Mexico
| | - Imelda González-Ramírez
- Departamento de Atención a La Salud, Universidad Autónoma Metropolitana Xochimilco, Mexico City, 14610, Mexico
| | - Vilma Maldonado-Lagunas
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Karla Vazquez-Santillan
- Laboratorio de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Vanessa González-Covarrubias
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla, 54090, Mexico
| | | |
Collapse
|
2
|
Yang K, Tang J, Li H, Zhang H, Ding J, Li Z, Luo J. LncRNAs in Kawasaki disease and Henoch-Schönlein purpura: mechanisms and clinical applications. Mol Cell Biochem 2024; 479:1969-1984. [PMID: 37639198 DOI: 10.1007/s11010-023-04832-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Kawasaki disease (KD) and Henoch-Schönlein purpura (HSP) are the two most predominant types of childhood vasculitis. In childhood vasculitis, factors such as lack of sensitive diagnostic indicators and adverse effects of drug therapy may cause multiorgan system involvement and complications and even death. Many studies suggest that long noncoding RNAs (lncRNAs) are involved in the mechanism of vasculitis development in children and can be used to diagnose or predict prognosis by lncRNAs. In existing drug therapies, lncRNAs are also involved in drug-mediated treatment mechanisms and are expected to improve drug toxicity. The aim of this review is to summarize the link between lncRNAs and the pathogenesis of KD and HSP. In addition, we review the potential applications of lncRNAs in multiple dimensions, such as diagnosis, treatment, and prognosis prediction. This review highlights that targeting lncRNAs may be a novel therapeutic strategy to improve and treat KD and HSP.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Jiayao Tang
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Haoying Li
- Queen Mary School of Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinghua Luo
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Najafi S, Asemani Y, Majidpoor J, Mahmoudi R, Aghaei-Zarch SM, Mortezaee K. Tumor-educated platelets. Clin Chim Acta 2024; 552:117690. [PMID: 38056548 DOI: 10.1016/j.cca.2023.117690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Beyond traditional roles in homeostasis and coagulation, growing evidence suggests that platelets also reflect malignant transformation in cancer. Platelets are present in the tumor microenvironment where they interact with cancer cells. This interaction results in direct and indirect "education" as evident by platelet alterations in adhesion molecules, glycoproteins, nucleic acids, proteins and various receptors. Subsequently, these tumor-educated platelets (TEPs) circulate throughout the body and play pivotal roles in promotion of tumor growth and dissemination. Accordingly, platelet status can be considered a unique blood-based biomarker that can potentially predict prognosis and therapeutic success. Recently, liquid biopsies including TEPs have received much attention as safe, minimally invasive and sensitive alternatives for patient management. Herein, we provide an overview of TEPs and explore their benefits and limitations in cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Wu Z, Yin H, Guo Y, Yin H, Li Y. Detection of cell-type-enriched long noncoding RNAs in atherosclerosis using single-cell techniques: A brief review. Life Sci 2023; 333:122138. [PMID: 37805167 DOI: 10.1016/j.lfs.2023.122138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Cardiovascular diseases are the leading causes of mortality and morbidity worldwide. Atherosclerotic plaque underlies the predominant factors and is composed of various cell types, including structure cells, such as endothelial and smooth muscle cells, and immune cells, such as macrophages and T cells. Single-cell RNA sequencing (scRNA-seq) has been extensively applied to decipher these cellular heterogeneities to expand our understanding on the mechanisms of atherosclerosis (AS) and to facilitate identifying cell-type-specific long noncoding RNAs (LncRNAs). LncRNAs have been demonstrated to deeply regulate biological activities at the transcriptional and post-transcriptional levels. A group of well-documented functional lncRNAs in AS have been studied. In our review, we selectively described several lncRNAs involved in the critical process of AS. We highlighted four novel lncRNAs (lncRNA CARMN, LINC00607, PCAT19, LINC01235) detected in scRNA-seq datasets and their functions in AS. We also reviewed open web source and bioinformatic tools, as well as the latest methods to perform an in-depth study of lncRNAs. It is fundamental to annotate functional lncRNAs in the various biological activities of AS, as lncRNAs may represent promising targets in the future for treatment and diagnosis in clinical practice.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, PR China
| | - Huarun Yin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100730 Beijing, PR China
| | - Yongsheng Guo
- Peking University Health Science Center, 100191 Beijing, PR China
| | - Hongchao Yin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100730 Beijing, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, PR China; Peking University Health Science Center, 100191 Beijing, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, PR China
| |
Collapse
|
6
|
Wiyarta E, Nugraha DA, Ramadani MI, Gustya GF, Ammar MF, Edwar HD, Kheirizzad N, Mukhlisah MN, Burhan E, Syahruddin E. Clinical utility and diagnostic value of tumor-educated platelets in lung cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1201713. [PMID: 37564936 PMCID: PMC10410284 DOI: 10.3389/fonc.2023.1201713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Background The review addresses the knowledge gap concerning the diagnostic value and clinical utility of tumor-educated platelets (TEPs) in adult patients with lung cancer. Methods We searched twelve databases: PubMed, CENTRAL, EMBASE, CINAHL, MEDLINE, Scopus, ProQuest, MedRxiv, BioRxiv, SSRN, Clinicaltrials.gov, and CNKI up to 24 March 2023, to include any diagnostic study regarding TEPs and LC. TEPs diagnostic value was evaluated from pooled sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the curve (AUC). QUADAS 2 was used to assess the risk of bias. Heterogeneity analysis was assessed using the receiver operating characteristic (ROC) plane, Galbraith plot, bivariate boxplot, sensitivity analysis, and meta-regression. TEPs clinical utility was evaluated from Fagan's nomogram. Results 44 reports from 10 studies, including 7,858 events and 6,632 controls, were analyzed. The pooled sensitivity, specificity, PLR, NLR, and DOR were 0.80 (95% CI 0.79-0.80), 0.69 (95% CI 0.69-0.70), 2.92 (95% CI 2.50-3.41), 0.26 (95% CI 0.21-0.32), and 12.1 (95% CI 8.61-16.76), respectively. In addition, the AUC of the Summary ROC curve was 0.85 (95% CI: 0.81-0.88). The overall risk of bias was low. Heterogeneity may result from cancer stage, cancer control, measuring equipment, and RNA types across studies. There was no apparent publication bias (p=0.29) with significant positive (79%) and negative (22%) post-test probability, according to Deeks funnel plot asymmetry test and Fagan's nomogram. Conclusion TEPs could be a moderately effective candidate biomarker for LC diagnosis.
Collapse
Affiliation(s)
- Elvan Wiyarta
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Darrin Ananda Nugraha
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Indera Ramadani
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Gita Fajri Gustya
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Farrasy Ammar
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Hana Dzakira Edwar
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Nildza Kheirizzad
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Mutiah Nurul Mukhlisah
- Respiratory and Tuberculosis Research and Training Center (SATURATE), Faculty of Medicine, Persahabatan National Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Erlina Burhan
- Infection Division, Department of Pulmonology, Faculty of Medicine, Universitas Indonesia, Persahabatan National Hospital, Jakarta, Indonesia
| | - Elisna Syahruddin
- Oncology Division, Department of Pulmonology, Faculty of Medicine, Universitas Indonesia, Persahabatan National Hospital, Jakarta, Indonesia
| |
Collapse
|
7
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
8
|
Cimmino G, Conte S, Palumbo D, Sperlongano S, Torella M, Della Corte A, Golino P. The Novel Role of Noncoding RNAs in Modulating Platelet Function: Implications in Activation and Aggregation. Int J Mol Sci 2023; 24:7650. [PMID: 37108819 PMCID: PMC10144470 DOI: 10.3390/ijms24087650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
It is currently believed that plaque complication, with the consequent superimposed thrombosis, is a key factor in the clinical occurrence of acute coronary syndromes (ACSs). Platelets are major players in this process. Despite the considerable progress made by the new antithrombotic strategies (P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in terms of a reduction in major cardiovascular events, a significant number of patients with previous ACSs treated with these drugs continue to experience events, indicating that the mechanisms of platelet remain largely unknown. In the last decade, our knowledge of platelet pathophysiology has improved. It has been reported that, in response to physiological and pathological stimuli, platelet activation is accompanied by de novo protein synthesis, through a rapid and particularly well-regulated translation of resident mRNAs of megakaryocytic derivation. Although the platelets are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used for protein synthesis following their activation. A better understanding of the pathophysiology of platelet activation and the interaction with the main cellular components of the vascular wall will open up new perspectives in the treatment of the majority of thrombotic disorders, such as ACSs, stroke, and peripheral artery diseases before and after the acute event. In the present review, we will discuss the novel role of noncoding RNAs in modulating platelet function, highlighting the possible implications in activation and aggregation.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Lung Diseases, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy
| | - Domenico Palumbo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Simona Sperlongano
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| |
Collapse
|
9
|
He X, Liu Y, Li Y, Wu K. Long non-coding RNA crnde promotes deep vein thrombosis by sequestering miR-181a-5p away from thrombogenic Pcyox1l. Thromb J 2023; 21:44. [PMID: 37076891 PMCID: PMC10116699 DOI: 10.1186/s12959-023-00480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Deep vein thrombosis (DVT) is an interplay of genetic and acquired risk factors, where functional interactions in lncRNA-miRNA-mRNA ceRNA networks contribute to disease pathogenesis. Based on the high-throughput transcriptome sequencing prediction, we have assessed the contribution of lncRNA Crnde/miR-181a-5p/Pcyox1l axis to thrombus formation. METHODS DVT was modeled in mice by inferior vena cava stenosis, and inferior vena cava tissues were harvested for high-throughput transcriptome sequencing to screen differentially expressed lncRNAs and mRNAs. The key miRNA binding to Crnde and Pcyox1l was obtained through searching the RNAInter and mirWalk databases. The binding affinity between Crnde, miR-181a-5p, and Pcyox1l was examined by FISH, dual luciferase reporter gene, RNA pull-down, and RIP assays. Functional experiments were conducted in DVT mouse models to assess thrombus formation and inflammatory injury in inferior vena cava. RESULTS It was noted that Crnde and Pcyox1l were upregulated in the blood of DVT mice. Crnde competitively bound to miR-181a-5p and inhibited miR-181a-5p expression, and Pcyox1l was the downstream target gene of miR-181a-5p. Silencing of Crnde or restoration of miR-181a-5p reduced inflammatory injury in the inferior vena cava, thus curtailing thrombus formation in mice. Ectopic expression of Pcyox1l counterweighed the inhibitory effect of Crnde silencing. CONCLUSIONS Therefore, Crnde sequesters miR-181a-5p to release Pcyox1l expression via ceRNA mechanism, thus aggravating thrombus formation in DVT.
Collapse
Affiliation(s)
- Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yu Liu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University & National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan Province, China
| | - Yaozhen Li
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University & National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan Province, China
| | - Kemin Wu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University & National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
10
|
Zhang Q, Song X, Song X. Contents in tumor-educated platelets as the novel biosource for cancer diagnostics. Front Oncol 2023; 13:1165600. [PMID: 37139159 PMCID: PMC10151018 DOI: 10.3389/fonc.2023.1165600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Liquid biopsy, a powerful non-invasive test, has been widely used in cancer diagnosis and treatment. Platelets, the second most abundant cells in peripheral blood, are becoming one of the richest sources of liquid biopsy with the capacity to systematically and locally respond to the presence of cancer and absorb and store circulating proteins and different types of nucleic acids, thus called "tumor-educated platelets (TEPs)". The contents of TEPs are significantly and specifically altered, empowering them with the potential as cancer biomarkers. The current review focuses on the alternation of TEP content, including coding and non-coding RNA and proteins, and their role in cancer diagnostics.
Collapse
Affiliation(s)
- Qianru Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Xingguo Song,
| |
Collapse
|