1
|
Zhao Y, Li X, Zhou C, Peng H, Zheng Z, Chen J, Ding W. A review of cancer data fusion methods based on deep learning. INFORMATION FUSION 2024; 108:102361. [DOI: 10.1016/j.inffus.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Wang K, Song L, Wang C, Ren Z, Zhao G, Dou J, Di J, Barbastathis G, Zhou R, Zhao J, Lam EY. On the use of deep learning for phase recovery. LIGHT, SCIENCE & APPLICATIONS 2024; 13:4. [PMID: 38161203 PMCID: PMC10758000 DOI: 10.1038/s41377-023-01340-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Phase recovery (PR) refers to calculating the phase of the light field from its intensity measurements. As exemplified from quantitative phase imaging and coherent diffraction imaging to adaptive optics, PR is essential for reconstructing the refractive index distribution or topography of an object and correcting the aberration of an imaging system. In recent years, deep learning (DL), often implemented through deep neural networks, has provided unprecedented support for computational imaging, leading to more efficient solutions for various PR problems. In this review, we first briefly introduce conventional methods for PR. Then, we review how DL provides support for PR from the following three stages, namely, pre-processing, in-processing, and post-processing. We also review how DL is used in phase image processing. Finally, we summarize the work in DL for PR and provide an outlook on how to better use DL to improve the reliability and efficiency of PR. Furthermore, we present a live-updating resource ( https://github.com/kqwang/phase-recovery ) for readers to learn more about PR.
Collapse
Affiliation(s)
- Kaiqiang Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Li Song
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Chutian Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Zhenbo Ren
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China
| | - Guangyuan Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiazhen Dou
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jianglei Di
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - George Barbastathis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianlin Zhao
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, China.
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Fan C, Li J, Du Y, Hu Z, Chen H, Yang Z, Zhang G, Zhang L, Zhao Z, Zhao H. Flexible dynamic quantitative phase imaging based on division of focal plane polarization imaging technique. OPTICS EXPRESS 2023; 31:33830-33841. [PMID: 37859154 DOI: 10.1364/oe.498239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023]
Abstract
This paper proposes a flexible and accurate dynamic quantitative phase imaging (QPI) method using single-shot transport of intensity equation (TIE) phase retrieval achieved by division of focal plane (DoFP) polarization imaging technique. By exploiting the polarization property of the liquid crystal spatial light modulator (LC-SLM), two intensity images of different defocus distances contained in orthogonal polarization directions can be generated simultaneously. Then, with the help of the DoFP polarization imaging, these images can be captured with single exposure, enabling accurate dynamic QPI by solving the TIE. In addition, our approach gains great flexibility in defocus distance adjustment by adjusting the pattern loaded on the LC-SLM. Experiments on microlens array, phase plate, and living human gastric cancer cells demonstrate the accuracy, flexibility, and dynamic measurement performance for various objects. The proposed method provides a simple, flexible, and accurate approach for real-time QPI without sacrificing the field of view.
Collapse
|
4
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|