1
|
Struck EC, Belova T, Hsieh PH, Odeberg JO, Kuijjer ML, Dusart PJ, Butler LM. Global Transcriptome Analysis Reveals Distinct Phases of the Endothelial Response to TNF. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:117-129. [PMID: 38019121 PMCID: PMC10733583 DOI: 10.4049/jimmunol.2300419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The vascular endothelium acts as a dynamic interface between blood and tissue. TNF-α, a major regulator of inflammation, induces endothelial cell (EC) transcriptional changes, the overall response dynamics of which have not been fully elucidated. In the present study, we conducted an extended time-course analysis of the human EC response to TNF, from 30 min to 72 h. We identified regulated genes and used weighted gene network correlation analysis to decipher coexpression profiles, uncovering two distinct temporal phases: an acute response (between 1 and 4 h) and a later phase (between 12 and 24 h). Sex-based subset analysis revealed that the response was comparable between female and male cells. Several previously uncharacterized genes were strongly regulated during the acute phase, whereas the majority in the later phase were IFN-stimulated genes. A lack of IFN transcription indicated that this IFN-stimulated gene expression was independent of de novo IFN production. We also observed two groups of genes whose transcription was inhibited by TNF: those that resolved toward baseline levels and those that did not. Our study provides insights into the global dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression patterns during the acute and later phases. Data for all coding and noncoding genes is provided on the Web site (http://www.endothelial-response.org/). These findings may be useful in understanding the role of ECs in inflammation and in developing TNF signaling-targeted therapies.
Collapse
Affiliation(s)
- Eike C. Struck
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Tatiana Belova
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Ping-Han Hsieh
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Jacob O. Odeberg
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- The University Hospital of North Norway, Tromsø, Norway
- Coagulation Unit, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Marieke L. Kuijjer
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Philip J. Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lynn M. Butler
- Department of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Zhang WH, Yan YN, Williams JP, Guo J, Ma BF, An JX. Dexmedetomidine prevents spatial learning and memory impairment induced by chronic REM sleep deprivation in rats. Sleep Biol Rhythms 2023; 21:347-357. [PMID: 38476312 PMCID: PMC10900044 DOI: 10.1007/s41105-023-00450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 01/26/2023] [Indexed: 03/17/2023]
Abstract
The study was attempted to investigate the effect on and mechanisms of action of dexmedetomidine with regard to learning and memory impairment in rats with chronic rapid eye movement (REM) sleep deprivation. A total of 50 male Sprague Dawley rats were randomly divided into five groups. Modified multiple platform method was conducted to cause the sleep deprivation of rats. Dexmedetomidine and midazolam were administered by intraperitoneal injection. Learning and memory ability was assessed through Morris water maze. Morphological changes of rat hippocampal neurons and synaptic were detected by transmission electron microscope and Golgi staining. The gene expression in hippocampus of each group was detected by RNA-seq and verified by RT-PCR and western blot. REM Sleep-deprived rats exhibited spatial learning and memory deficits. Furthermore, there was decreased density of synaptic spinous in the hippocampal CA1 region of the sleep deprivation group compared with the control. Additionally, transmission electron microscopy showed that the synaptic gaps of hippocampal neurons in REM sleep deprivation group were loose and fuzzy. Interestingly, dexmedetomidine treatment normalized these events to control levels following REM sleep deprivation. Molecular biological methods showed that Alox15 expression increased significantly after REM sleep deprivation as compared to control, while dexmedetomidine administration reversed the expression of Alox15. Dexmedetomidine alleviated the spatial learning and memory dysfunction induced with chronic REM sleep deprivation in rats. This protective effect may be related to the down-regulation of Alox15 expression and thereby the enhancement of synaptic structural plasticity in the hippocampal CA1 area of rats. Supplementary Information The online version contains supplementary material available at 10.1007/s41105-023-00450-8.
Collapse
Affiliation(s)
- Wen-Hao Zhang
- Department of Anesthesiology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012 China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yi-Ning Yan
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - John P. Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Jian Guo
- Department of Anesthesiology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012 China
| | - Bao-Feng Ma
- Department of Anesthesiology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012 China
| | - Jian-Xiong An
- Department of Anesthesiology, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beiyuan Rd 3#, Beijing, 100012 China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
- School of Medical Science and Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191 China
- School of Anesthesiology, Weifang Medical University & Department of Anesthesiology, Pain & Sleep Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261000 Shandong China
| |
Collapse
|