1
|
Yeh KT, Wu WT, Wang CC, Lee RP. Adipose-derived stem cells and antibiotics: A novel synergistic approach for treating implant-related osteomyelitis. Tzu Chi Med J 2024; 36:271-274. [PMID: 38993834 PMCID: PMC11236081 DOI: 10.4103/tcmj.tcmj_48_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 07/13/2024] Open
Abstract
Implant-related osteomyelitis poses a significant challenge in orthopedic practice, particularly due to the increasing prevalence of antibiotic-resistant infections and biofilm-associated complications. This article focused on exploring the potential of combination therapy with adipose-derived stem cells (ADSCs) and antibiotics to overcome these challenges, thereby enhancing treatment efficacy. A systematic synthesis of the results of recent in vivo studies, predominantly those using rat models, was performed. Studies that evaluated the effectiveness of ADSCs combined with antibiotics against common pathogens in implant-related osteomyelitis, particularly Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, were selected. A significant reduction in symptoms such as swelling, abscess formation, and bacterial burden in the ADSCs + antibiotic-treated group was observed in all studies. In addition, microcomputed tomography revealed reduced osteolysis, indicating enhanced bone preservation. Furthermore, histological examination revealed improved tissue structure and altered immune response, signifying the dual role of ADSCs in enhancing antibiotic action and modulating the immune system. This review highlights the promising role of the concurrent use of ADSCs and antibiotics in the treatment of implant-related osteomyelitis. This novel therapeutic strategy has the potential to revolutionize the management of complex orthopedic infections, especially those resistant to conventional treatments. However, further research is required to translate the results of animal studies into clinical applications and to develop optimized treatment protocols for human use.
Collapse
Affiliation(s)
- Kuang-Ting Yeh
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien, Taiwan
| | - Wen-Tien Wu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chen-Chie Wang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Ru-Ping Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
2
|
Maisenbacher TC, Ehnert S, Histing T, Nüssler AK, Menger MM. Advantages and Limitations of Diabetic Bone Healing in Mouse Models: A Narrative Review. Biomedicines 2023; 11:3302. [PMID: 38137522 PMCID: PMC10741210 DOI: 10.3390/biomedicines11123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes represents a major risk factor for impaired fracture healing. Type 2 diabetes mellitus is a growing epidemic worldwide, hence an increase in diabetes-related complications in fracture healing can be expected. However, the underlying mechanisms are not yet completely understood. Different mouse models are used in preclinical trauma research for fracture healing under diabetic conditions. The present review elucidates and evaluates the characteristics of state-of-the-art murine diabetic fracture healing models. Three major categories of murine models were identified: Streptozotocin-induced diabetes models, diet-induced diabetes models, and transgenic diabetes models. They all have specific advantages and limitations and affect bone physiology and fracture healing differently. The studies differed widely in their diabetic and fracture healing models and the chosen models were evaluated and discussed, raising concerns in the comparability of the current literature. Researchers should be aware of the presented advantages and limitations when choosing a murine diabetes model. Given the rapid increase in type II diabetics worldwide, our review found that there are a lack of models that sufficiently mimic the development of type II diabetes in adult patients over the years. We suggest that a model with a high-fat diet that accounts for 60% of the daily calorie intake over a period of at least 12 weeks provides the most accurate representation.
Collapse
Affiliation(s)
- Tanja C. Maisenbacher
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| | - Andreas K. Nüssler
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| |
Collapse
|
3
|
Ferro F, Azzolin F, Spelat R, Bevilacqua L, Maglione M. Considering the Value of 3D Cultures for Enhancing the Understanding of Adhesion, Proliferation, and Osteogenesis on Titanium Dental Implants. Biomolecules 2023; 13:1048. [PMID: 37509084 PMCID: PMC10377630 DOI: 10.3390/biom13071048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Individuals with pathologic conditions and restorative deficiencies might benefit from a combinatorial approach encompassing stem cells and dental implants; however, due to the various surface textures and coatings, the influence of titanium dental implants on cells exhibits extensive, wide variations. Three-dimensional (3D) cultures of stem cells on whole dental implants are superior in testing implant properties and were used to examine their capabilities thoroughly. MATERIALS AND METHODS The surface micro-topography of five titanium dental implants manufactured by sandblasting with titanium, aluminum, corundum, or laser sintered and laser machined was compared in this study. After characterization, including particle size distribution and roughness, the adhesion, proliferation, and viability of adipose-derived stem cells (ADSCs) cultured on the whole-body implants were tested at three time points (one to seven days). Finally, the capacity of the implant to induce ADSCs' spontaneous osteoblastic differentiation was examined at the same time points, assessing the gene expression of collagen type 1 (coll-I), osteonectin (osn), alkaline phosphatase (alp), and osteocalcin (osc). RESULTS Laser-treated (Laser Mach and Laser Sint) implants exhibited the highest adhesion degree; however, limited proliferation was observed, except for Laser Sint implants, while viability differences were seen throughout the three time points, except for Ti Blast implants. Sandblasted surfaces (Al Blast, Cor Blast, and Ti Blast) outpaced the laser-treated ones, inducing higher amounts of coll-I, osn, and alp, but not osc. Among the sandblasted surfaces, Ti Blast showed moderate roughness and the highest superficial texture density, favoring the most significant spontaneous differentiation relative to all the other implant surfaces. CONCLUSIONS The results indicate that 3D cultures of stem cells on whole-body titanium dental implants is a practical and physiologically appropriate way to test the biological characteristics of the implants, revealing peculiar differences in ADSCs' adhesion, proliferation, and activity toward osteogenic commitment in the absence of specific osteoinductive cues. In addition, the 3D method would allow researchers to test various implant surfaces more thoroughly. Integrating with preconditioned stem cells would inspire a more substantial combinatorial approach to promote a quicker recovery for patients with restorative impairments.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Federico Azzolin
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Lorenzo Bevilacqua
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Michele Maglione
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| |
Collapse
|
4
|
Barachini S, Biso L, Kolachalam S, Petrini I, Maggio R, Scarselli M, Longoni B. Mesenchymal Stem Cell in Pancreatic Islet Transplantation. Biomedicines 2023; 11:biomedicines11051426. [PMID: 37239097 DOI: 10.3390/biomedicines11051426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic islet transplantation is a therapeutic option for achieving physiologic regulation of plasma glucose in Type 1 diabetic patients. At the same time, mesenchymal stem cells (MSCs) have demonstrated their potential in controlling graft rejection, the most fearsome complication in organ/tissue transplantation. MSCs can interact with innate and adaptive immune system cells either through direct cell-cell contact or through their secretome including exosomes. In this review, we discuss current findings regarding the graft microenvironment of pancreatic islet recipient patients and the crucial role of MSCs operation as cell managers able to control the immune system to prevent rejection and promote endogenous repair. We also discuss how challenging stressors, such as oxidative stress and impaired vasculogenesis, may jeopardize graft outcomes. In order to face these adverse conditions, we consider either hypoxia-exposure preconditioning of MSCs or human stem cells with angiogenic potential in organoids to overcome islets' lack of vasculature. Along with the shepherding of carbon nanotubes-loaded MSCs to the transplantation site by a magnetic field, these studies look forward to exploiting MSCs stemness and their immunomodulatory properties in pancreatic islet transplantation.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Letizia Biso
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Aseptic Pharmacy, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Iacopo Petrini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Ferro F, Azzolin F, Spelat R, Bevilacqua L, Maglione M. Assessing the Efficacy of Whole-Body Titanium Dental Implant Surface Modifications in Inducing Adhesion, Proliferation, and Osteogenesis in Human Adipose Tissue Stem Cells. J Funct Biomater 2022; 13:jfb13040206. [PMID: 36412847 PMCID: PMC9680380 DOI: 10.3390/jfb13040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although the influence of titanium implants' micro-surface properties on titanium discs has been extensively investigated, the research has not taken into consideration their whole-body effect, which may be considered possible using a combinatorial approach. METHODS Five titanium dental implants with a similar moderate roughness and different surface textures were thoroughly characterized. The cell adhesion and proliferation were assessed after adipose-tissue-derived stem cells (ADSCs) were seeded on whole-body implants. The implants' inductive properties were assessed by evaluating the osteoblastic gene expression. RESULTS The surface micro-topography was analyzed, showing that hydroxyapatite (HA)-blasted and bland acid etching implants had the highest roughness and a lower number of surface particles. Cell adhesion was observed after 24 h on all the implants, with the highest score registered for the HA-blasted and bland acid etching implants. Cell proliferation was observed only on the laser-treated and double-acid-etched surfaces. The ADSCs expressed collagen type I, osteonectin, and alkaline phosphatase on all the implant surfaces, with high levels on the HA-treated surfaces, which also triggered osteocalcin expression on day seven. CONCLUSIONS The findings of this study show that the morphology and treatment of whole titanium dental implants, primarily HA-treated and bland acid etching implants, impact the adherence and activity of ADSCs in osteogenic differentiation in the absence of specific osteo-inductive signals.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical and Biological Sciences, University of Udine, 33100 Udine, Italy
- Correspondence:
| | - Federico Azzolin
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Lorenzo Bevilacqua
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| | - Michele Maglione
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
| |
Collapse
|