1
|
Yu M, Song T, Yu J, Cao H, Pan X, Qi Z, Du Y, Liu W, Liu Y. UvVelC is important for conidiation and pathogenicity in the rice false smut pathogen Ustilaginoidea virens. Virulence 2024; 15:2301243. [PMID: 38240294 PMCID: PMC10802205 DOI: 10.1080/21505594.2023.2301243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Rice false smut disease is one of the most significant rice diseases worldwide. Ustilaginoidea virens is the causative agent of this disease. Although several developmental and pathogenic genes have been identified and functionally analyzed, the pathogenic molecular mechanisms of U. virens remain elusive. The velvet family regulatory proteins are involved in fungal development, conidiation, and pathogenicity. In this study, we demonstrated the function of the VelC homolog UvVELC in U. virens. We identified the velvet family protein UvVELC and characterized its functions using a target gene deletion-strategy. Deletion of UvVELC resulted in conidiation failure and pathogenicity. The UvVELC expression levels during infection suggested that this gene might be involved in the early infection process. UvVELC is also important in resistance to abiotic stresses, the utilization efficiency of glucose, stachyose, raffinose, and other sugars, and the expression of transport-related genes. Moreover, UvVELC could physically interact with UvVEA in yeast, and UvVELC/UvVEA double-knockout mutants also failed in conidiation and pathogenicity. These results indicate that UvVELC play a critical role in the conidiation and pathogenicity in U. virens. Functional analysis indicated that UvVELC-mediated conidiation and nutrient acquisition from rice regulates the pathogenicity of U. virens. Understanding the function of the UvVELC homolog could provide a potential molecular target for controlling rice false smut disease.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Insistant of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
2
|
Gachara G, Suleiman R, Kilima B, Taoussi M, El Kadili S, Fauconnier ML, Barka EA, Vujanovic V, Lahlali R. Pre- and post-harvest aflatoxin contamination and management strategies of Aspergillus spoilage in East African Community maize: review of etiology and climatic susceptibility. Mycotoxin Res 2024; 40:495-517. [PMID: 39264500 DOI: 10.1007/s12550-024-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Globally, maize (Zea mays L.) is deemed an important cereal that serves as a staple food and feed for humans and animals, respectively. Across the East African Community, maize is the staple food responsible for providing over one-third of calories in diets. Ideally, stored maize functions as man-made grain ecosystems, with nutritive quality changes influenced predominantly by chemical, biological, and physical factors. Food spoilage and fungal contamination are convergent reasons that contribute to the exacerbation of mycotoxins prevalence, particularly when storage conditions have deteriorated. In Kenya, aflatoxins are known to be endemic with the 2004 acute aflatoxicosis outbreak being described as one of the most ravaging epidemics in the history of human mycotoxin poisoning. In Tanzania, the worst aflatoxin outbreak occurred in 2016 with case fatalities reaching 50%. Similar cases of aflatoxicoses have also been reported in Uganda, scenarios that depict the severity of mycotoxin contamination across this region. Rwanda, Burundi, and South Sudan seemingly have minimal occurrences and fatalities of aflatoxicoses and aflatoxin contamination. Low diet diversity tends to aggravate human exposure to aflatoxins since maize, as a dietetic staple, is highly aflatoxin-prone. In light of this, it becomes imperative to formulate and develop workable control frameworks that can be embraced in minimizing aflatoxin contamination throughout the food chain. This review evaluates the scope and magnitude of aflatoxin contamination in post-harvest maize and climate susceptibility within an East African Community context. The paper also treats the potential green control strategies against Aspergillus spoilage including biocontrol-prophylactic handling for better and durable maize production.
Collapse
Affiliation(s)
- G Gachara
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco.
- Department of AgroBiosciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania.
| | - R Suleiman
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - B Kilima
- Department of Food Sciences and Agro-Processing, School of Engineering and Technology, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - M Taoussi
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Meknès, Morocco
| | - S El Kadili
- Department of Animal Production, Ecole Nationale d'Agriculture de Meknès, Route Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - M L Fauconnier
- Gembloux AgroBiotech, University of Liege, Gembloux, Belgium
| | - E A Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - V Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - R Lahlali
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d'Agriculture de Meknès, Km 10, Route Haj Kaddour, BP S/40, 50001, Meknès, Morocco.
- Department of AgroBiosciences, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Morocco.
| |
Collapse
|
3
|
Wei S, Xu Q, Pei S, Lv Y, Lei Y, Zhang S, Zhai H, Hu Y. Unraveling the antifungal and anti-aflatoxin B 1 mechanisms of piperitone on Aspergillus flavus. Food Microbiol 2024; 123:104588. [PMID: 39038893 DOI: 10.1016/j.fm.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Aspergillus flavus infects important crops and produces carcinogenic aflatoxins, posing a serious threat to food safety and human health. Biochemical analysis and RNA-seq were performed to investigate the effects and mechanisms of piperitone on A. flavus growth and aflatoxin B1 biosynthesis. Piperitone significantly inhibited the growth of A. flavus, AFB1 production, and its pathogenicity on peanuts and corn flour. Differentially expressed genes (DEGs) associated with the synthesis of chitin, glucan, and ergosterol were markedly down-regulated, and the ergosterol content was reduced, resulting in a disruption in the integrity of the cell wall and cell membrane. Moreover, antioxidant genes were down-regulated, the correspondingly activities of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase were reduced, and levels of superoxide anion and hydrogen peroxide were increased, leading to a burst of reactive oxygen species (ROS). Accompanied by ROS accumulation, DNA fragmentation and cell autophagy were observed, and 16 aflatoxin cluster genes were down-regulated. Overall, piperitone disrupts the integrity of the cell wall and cell membrane, triggers the accumulation of ROS, causes DNA fragmentation and cell autophagy, ultimately leading to defective growth and impaired AFB1 biosynthesis.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Qianru Xu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Shan Pei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Yang Lei
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, PR China; Food Laboratory of Zhongyuan, Henan University of Technology, Luohe, 462300, Henan, PR China.
| |
Collapse
|
4
|
Jia K, Jia Y, Zeng Q, Yan Z, Wang S. Regulation of Conidiation and Aflatoxin B1 Biosynthesis by a Blue Light Sensor LreA in Aspergillus flavus. J Fungi (Basel) 2024; 10:650. [PMID: 39330410 PMCID: PMC11433291 DOI: 10.3390/jof10090650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Conidia are important for the dispersal of Aspergillus flavus, which usually generates aflatoxin B1 (AFB1) and poses a threat to the safety of agricultural food. The development of conidia is usually susceptible to changes in environmental conditions, such as nutritional status and light. However, how the light signal is involved in the conidiation in A. flavus is still unknown. In this study, LreA was identified to respond to blue light and mediate the promotion of conidiation in A. flavus, which is related to the central development pathway. At the same time, blue light inhibited the biosynthesis of AFB1, which was mediated by LreA and attributed to the transcriptional regulation of aflR and aflS expression. Our findings disclosed the function and mechanism of the blue light sensor LreA in regulating conidiation and AFB1 biosynthesis, which is beneficial for the prevention and control of A. flavus and mycotoxins.
Collapse
Affiliation(s)
- Kunzhi Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yipu Jia
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianhua Zeng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhaoqi Yan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Guo H, Mo LX, Luo XM, Zhao S, Feng JX. Mutual regulation of novel transcription factors RsrD and RsrE positively modulates the production of raw-starch-degrading enzyme in Penicillium oxalicum. Appl Environ Microbiol 2024; 90:e0039024. [PMID: 39023351 PMCID: PMC11337836 DOI: 10.1128/aem.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/29/2024] [Indexed: 07/20/2024] Open
Abstract
Filamentous fungi can produce raw-starch-degrading enzyme, however, regulation of production of raw-starch-degrading enzyme remains poorly understood thus far. Here, two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) were identified to participate in the production of raw-starch-degrading enzyme in Penicillium oxalicum. Individual knockout of rsrD and rsrE in the parental strain Δku70 resulted in 31.1%-92.9% reduced activity of raw-starch-degrading enzyme when cultivated in the presence of commercial starch from corn. RsrD and RsrE contained a basic leucine zipper and a Zn2Cys6-type DNA-binding domain, respectively, but with unknown functions. RsrD and RsrE dynamically regulated the expression of genes encoding major amylases over time, including raw-starch-degrading glucoamylase gene PoxGA15A and α-amylase gene amy13A. Interestingly, RsrD and RsrE regulated each other at transcriptional level, through binding to their own promoter regions; nevertheless, both failed to bind to the promoter regions of PoxGA15A and amy13A, as well as the known regulatory genes for regulation of amylase gene expression. RsrD appears to play an epistatic role in the module RsrD-RsrE on regulation of amylase gene expression. This study reveals a novel regulatory pathway of fungal production of raw-starch-degrading enzyme.IMPORTANCETo survive via combating with complex extracellular environment, filamentous fungi can secrete plant polysaccharide-degrading enzymes that can efficiently hydrolyze plant polysaccharide into glucose or other mono- and disaccharides, for their nutrients. Among the plant polysaccharide-degrading enzymes, raw-starch-degrading enzymes directly degrade and convert hetero-polymeric starch into glucose and oligosaccharides below starch gelatinization temperature, which can be applied in industrial biorefinery to save cost. However, the regulatory mechanism of production of raw-starch-degrading enzyme in fungi remains unknown thus far. Here, we showed that two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) positively regulate the production of raw-starch-degrading enzyme by Penicillium oxalicum. RsrD and RsrE indirectly control the expression of genes encoding enzymes with amylase activity but directly regulate each other at transcriptional level. These findings expand diversity of gene expression regulation in fungi.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, People's Republic of China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Li-Xiang Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, People's Republic of China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, People's Republic of China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, People's Republic of China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, People's Republic of China
- Guangxi Research Center for Microbial and Enzyme Engineering Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
6
|
Sabaly S, Tine Y, Diallo A, Faye A, Cisse M, Ndiaye A, Sambou C, Gaye C, Wele A, Paolini J, Costa J, Kane A, Ngom S. Antifungal Activity of Cyperus articulatus, Cyperus rotundus and Lippia alba Essential Oils against Aspergillus flavus Isolated from Peanut Seeds. J Fungi (Basel) 2024; 10:591. [PMID: 39194916 DOI: 10.3390/jof10080591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 08/29/2024] Open
Abstract
Aspergillus flavus is a cosmopolitan saprophytic fungus that infests several foodstuffs and is associated with adverse effects in humans. In Senegal, significant losses of groundnut production are mainly due to contamination caused by this species. This study evaluated in vitro antifungal activities of Cyperus articulatus, Cyperus rotundus and Lippia alba essential oils against A. flavus isolated from peanut seeds. Essential oils obtained by hydrodistillation of rhizomes of the two Cyperus species and leaves of L. alba were analyzed with GC-DIF and GC-MS. The essential oil yields from C. articulatus, C. rotundus and L. alba were 1.1%, 1.3% and 1.7%, respectively. These three samples had the following chemotypes: (i) mustakone (21.4%)/eudesma-4(15)-7-dien-1β-ol (8.8%)/caryophyllene oxide (5.9%), (ii) caryophyllene oxide (25.2%)/humulene epoxyde 2 (35.0%) and (iii) geranial (46.6%)/neral (34.6%). The three oils tested inhibited the growth of A. flavus at concentrations between 100 and 1000 ppm. The L. alba oil was the most effective with total clearance of A. flavus on PDA. For the essential oils of C. rotundus (93.65%) and C. articulatus (78.11%), the highest inhibition rates were obtained with a 1000 ppm dose. Thus, L. alba oil could be used safely as an effective protector of groundnuts against A. flavus.
Collapse
Affiliation(s)
- Safietou Sabaly
- Direction de la Protection des Végétaux (DPV), Thiaroye BP 0054, Senegal
| | - Yoro Tine
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar-Fann BP 5005, Senegal
| | - Alioune Diallo
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar-Fann BP 5005, Senegal
- Laboratoire Chimie des Produits Naturels, UMR CNRS 6134 Sciences Pour l'Environnement, Université de Corse, BP 52, 20250 Corte, France
| | - Abdoulaye Faye
- Direction de la Protection des Végétaux (DPV), Thiaroye BP 0054, Senegal
| | - Mouhamed Cisse
- Direction de la Protection des Végétaux (DPV), Thiaroye BP 0054, Senegal
| | - Abdoulaye Ndiaye
- Direction de la Protection des Végétaux (DPV), Thiaroye BP 0054, Senegal
| | - Cebastiana Sambou
- Direction de la Protection des Végétaux (DPV), Thiaroye BP 0054, Senegal
| | - Cheikhouna Gaye
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar-Fann BP 5005, Senegal
| | - Alassane Wele
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, Pharmacie et Odontologie, Université Cheikh Anta Diop, Dakar-Fann BP 5005, Senegal
| | - Julien Paolini
- Laboratoire Chimie des Produits Naturels, UMR CNRS 6134 Sciences Pour l'Environnement, Université de Corse, BP 52, 20250 Corte, France
| | - Jean Costa
- Laboratoire Chimie des Produits Naturels, UMR CNRS 6134 Sciences Pour l'Environnement, Université de Corse, BP 52, 20250 Corte, France
| | - Aboubacry Kane
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD), Dakar-Fann BP 5005, Senegal
| | - Saliou Ngom
- Direction de la Protection des Végétaux (DPV), Thiaroye BP 0054, Senegal
| |
Collapse
|
7
|
Wang X, Sahibzada KI, Du R, Lei Y, Wei S, Li N, Hu Y, Lv Y. Rhein Inhibits Cell Development and Aflatoxin Biosynthesis via Energy Supply Disruption and ROS Accumulation in Aspergillus flavus. Toxins (Basel) 2024; 16:285. [PMID: 39057925 PMCID: PMC11280830 DOI: 10.3390/toxins16070285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 μM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 μM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 μM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Kashif Iqbal Sahibzada
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
- Department of Health Professional Technologies, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54570, Pakistan
| | - Ruibo Du
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yang Lei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Na Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| |
Collapse
|
8
|
Lin H, Chen Z, Solomon Adade SYS, Yang W, Chen Q. Detection of Maize Mold Based on a Nanocomposite Colorimetric Sensor Array under Different Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11164-11173. [PMID: 38564679 DOI: 10.1021/acs.jafc.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study developed a novel nanocomposite colorimetric sensor array (CSA) to distinguish between fresh and moldy maize. First, the headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) method was used to analyze volatile organic compounds (VOCs) in fresh and moldy maize samples. Then, principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to identify 2-methylbutyric acid and undecane as key VOCs associated with moldy maize. Furthermore, colorimetric sensitive dyes modified with different nanoparticles were employed to enhance the dye properties used in the nanocomposite CSA analysis of key VOCs. This study focused on synthesizing four types of nanoparticles: polystyrene acrylic (PSA), porous silica nanospheres (PSNs), zeolitic imidazolate framework-8 (ZIF-8), and ZIF-8 after etching. Additionally, three types of substrates, qualitative filter paper, polyvinylidene fluoride film, and thin-layer chromatography silica gel, were comparatively used to fabricate nanocomposite CSA combining with linear discriminant analysis (LDA) and K-nearest neighbor (KNN) models for real sample detection. All moldy maize samples were correctly identified and prepared to characterize the properties of the CSA. Through initial testing and nanoenhancement of the chosen dyes, four nanocomposite colorimetric sensitive dyes were confirmed. The accuracy rates for LDA and KNN models in this study reached 100%. This work shows great potential for grain quality control using CSA methods.
Collapse
Affiliation(s)
- Hao Lin
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, P. R. China
| | - Zeyu Chen
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, P. R. China
| | | | - Wenjing Yang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, 9 13th Street, Economic and Technological Development Zone, Tianjin 300457, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Jiangsu 212013, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| |
Collapse
|
9
|
Xu J, Jiang M, Wang P, Kong Q. The Gene vepN Regulated by Global Regulatory Factor veA That Affects Aflatoxin Production, Morphological Development and Pathogenicity in Aspergillus flavus. Toxins (Basel) 2024; 16:174. [PMID: 38668599 PMCID: PMC11054512 DOI: 10.3390/toxins16040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/02/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
Velvet (VeA), a light-regulated protein that shuttles between the cytoplasm and the nucleus, serves as a key global regulator of secondary metabolism in various Aspergillus species and plays a pivotal role in controlling multiple developmental processes. The gene vepN was chosen for further investigation through CHIP-seq analysis due to significant alterations in its interaction with VeA under varying conditions. This gene (AFLA_006970) contains a Septin-type guanine nucleotide-binding (G) domain, which has not been previously reported in Aspergillus flavus (A. flavus). The functional role of vepN in A. flavus was elucidated through the creation of a gene knockout mutant and a gene overexpression strain using a well-established dual-crossover recombinational technique. A comparison between the wild type (WT) and the ΔvepN mutant revealed distinct differences in morphology, reproductive capacity, colonization efficiency, and aflatoxin production. The mutant displayed reduced growth rate; dispersion of conidial heads; impaired cell wall integrity; and decreased sclerotia formation, colonization capacity, and aflatoxin levels. Notably, ΔvepN exhibited complete growth inhibition under specific stress conditions, highlighting the essential role of vepN in A. flavus. This study provides evidence that vepN positively influences aflatoxin production, morphological development, and pathogenicity in A. flavus.
Collapse
Affiliation(s)
- Jia Xu
- School of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.X.); (M.J.)
| | - Mengqi Jiang
- School of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.X.); (M.J.)
| | - Peng Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China;
| | - Qing Kong
- School of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.X.); (M.J.)
| |
Collapse
|
10
|
Xie R, Zhang B, Tumukunde E, Zhuang Z, Yuan J, Wang S. Succinylated acetyl-CoA carboxylase contributes to aflatoxin biosynthesis, morphology development, and pathogenicity in Aspergillus flavus. Int J Food Microbiol 2024; 413:110585. [PMID: 38246023 DOI: 10.1016/j.ijfoodmicro.2024.110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Acetyl-CoA carboxylase (ACC), which catalyzes acetyl-CoA to produce malonyl-CoA, is crucial for the synthesis of mycotoxins, ergosterol, and fatty acids in various genera. However, its biofunction in Aspergillus flavus has not been reported. In this study, the accA gene was deleted and site-mutated to explore the influence of ACC on sporulation, sclerotium formation, and aflatoxin B1 (AFB1) biosynthesis. The results revealed that ACC positively regulated conidiation and sclerotium formation, but negatively regulated AFB1 production. In addition, we found that ACC is a succinylated protein, and mutation of lysine at position 990 of ACC to glutamic acid or arginine (accAK990E or accAK990R) changed the succinylation level of ACC. The accAK990E and accAK990R mutations (to imitate the succinylation and desuccinylation at K990 of ACC, respectively) downregulated fungal conidiation and sclerotium formation while increasing AFB1 production, revealing that the K990 is an important site for ACC's biofunction. These results provide valuable perspectives for future mechanism studies of the emerging roles of succinylated ACC in the regulation of the A. flavus phenotype, which is advantageous for the prevention and control of A. flavus hazards.
Collapse
Affiliation(s)
- Rui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Bei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Elisabeth Tumukunde
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Zhenhong Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jun Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.
| |
Collapse
|
11
|
Chen W, Son YE, Cho HJ, Choi D, Park HS, Yu JH. Phylogenomics analysis of velvet regulators in the fungal kingdom. Microbiol Spectr 2024; 12:e0371723. [PMID: 38179919 PMCID: PMC10845976 DOI: 10.1128/spectrum.03717-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
All life forms have evolved to respond appropriately to various environmental and internal cues. In the animal kingdom, the prototypical regulator class of such cellular responses is the Rel homology domain proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Fungi, the close relatives of animals, have also evolved with their own NF-κB-like regulators called velvet family proteins to govern cellular and chemical development. Here, we conducted a detailed investigation of the taxonomic broad presence of velvet proteins. We observed that velvet proteins are widely distributed in the fungal kingdom. Moreover, we have identified and characterized 21 major velvet clades in fungi. We have further revealed that the highly conserved velvet domain is composed of three distinct motifs and acts as an evolutionarily independent domain, which can be shuffled with various functional domains. Such rearrangements of the velvet domain have resulted in the functional and type diversity of the present velvet regulators. Importantly, our in-deep analyses of the primary and 3D structures of the various velvet domains showed that the fungal velvet domains can be divided into two major clans: the VelB and the VosA clans. The 3D structure comparisons revealed a close similarity of the velvet domain with many other eukaryotic DNA-binding proteins, including those of the Rel, Runt, and signal transducer and activator of transcription families, sharing a common β-sandwich fold. Altogether, this study improves our understanding of velvet regulators in the fungal kingdom.IMPORTANCEFungi are the relatives of animals in Opisthokonta and closely associated with human life by interactive ways such as pathogenicity, food, and secondary metabolites including beneficial ones like penicillin and harmful ones like the carcinogenic aflatoxins. Similar to animals, fungi have also evolved with NF-κB-like velvet family regulators. The velvet proteins constitute a large protein family of fungal transcription factors sharing a common velvet domain and play a key role in coordinating fungal secondary metabolism, developmental and differentiation processes. Our current understanding on velvet regulators is mostly from Ascomycota fungi; however, they remain largely unknown outside Ascomycota. Therefore, this study performed a taxonomic broad investigation of velvet proteins across the fungal kingdom and conducted a detailed analysis on velvet distribution, structure, diversity, and evolution. The results provide a holistic view of velvet regulatory system in the fungal kingdom.
Collapse
Affiliation(s)
- Wanping Chen
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Dasol Choi
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, South Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Chang PK. Creating large chromosomal segment deletions in Aspergillus flavus by a dual CRISPR/Cas9 system: Deletion of gene clusters for production of aflatoxin, cyclopiazonic acid, and ustiloxin B. Fungal Genet Biol 2024; 170:103863. [PMID: 38154756 DOI: 10.1016/j.fgb.2023.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
Aspergillus flavus produces hepatocarcinogenic aflatoxin that adversely impacts human and animal health and international trade. A promising means to manage preharvest aflatoxin contamination of crops is biological control, which employs non-aflatoxigenic A. flavus isolates possessing defective aflatoxin gene clusters to outcompete field toxigenic populations. However, these isolates often produce other toxic metabolites. The CRISPR/Cas9 technology has greatly advanced genome editing and gene functional studies. Its use in deleting large chromosomal segments of filamentous fungi is rarely reported. A system of dual CRISPR/Cas9 combined with a 60-nucleotide donor DNA that allowed removal of A. flavus gene clusters involved in production of harmful specialized metabolites was established. It efficiently deleted a 102-kb segment containing both aflatoxin and cyclopiazonic acid gene clusters from toxigenic A. flavus morphotypes, L-type and S-type. It further deleted the 27-kb ustiloxin B gene cluster of a resulting L-type mutant. Overall efficiencies of deletion ranged from 66.6 % to 85.6 % and efficiencies of deletions repaired by a single copy of donor DNA ranged from 50.5 % to 72.7 %. To determine the capacity of this technique, a pigment-screening setup based on absence of aspergillic acid gene cluster was devised. Chromosomal segments of 201 kb and 301 kb were deleted with efficiencies of 57.7 % to 69.2 %, respectively. This system used natural A. flavus isolates as recipients, eliminated a forced-recycling step to produce recipients for next round deletion, and generated maker-free deletants with sequences predefined by donor DNA. The research provides a method for creating genuine atoxigenic biocontrol strains friendly for field trial release.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, 1100 Allen Toussaint Boulevard, New Orleans, LA 70124, United States.
| |
Collapse
|
13
|
Wei S, Zhang Y, Wu M, Lv Y, Zhang S, Zhai H, Hu Y. Mechanisms of methyl 2-methylbutyrate suppression on Aspergillus flavus growth and aflatoxin B1 biosynthesis. Int J Food Microbiol 2024; 409:110462. [PMID: 37918192 DOI: 10.1016/j.ijfoodmicro.2023.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Aspergillus flavus and subsequently produced carcinogenic aflatoxins frequently contaminate postharvest food crops, resulting in a threat to global food safety. Chemical preservatives are currently the main antifungal agents. However, fungal resistance effect, biological toxicity, and environmental contamination limit their practical applications. The application of natural volatile organic compounds has great potential for controlling fungal and mycotoxin contamination of postharvest food crops. This study therefore investigated the antifungal and anti-aflatoxigenic activities of the volatile compound, methyl 2-methylbutyrate (M2M), against Aspergillus flavus and its potential mechanisms. M2M effectively inhibited A. flavus mycelia growth, with a minimum inhibitory concentration of 2.0 μL/mL. Moreover, M2M also suppressed aflatoxin production, sclerotia production, and the pathogenicity on peanut and corn flour. RNA-Seq results showed that 2899 differentially expressed genes (DEGs), and DEGs involved in ergosterol synthesis, cell wall structure, glycolysis, citric acid cycle, mitogen activated protein kinase signaling pathway, DNA replication, and aflatoxin biosynthesis, were down-regulated in A. flavus. Further studies showed that M2M strongly damaged the cell membrane and cell wall integrity, reduced ATP levels, and induced reactive oxygen species (ROS) accumulation and DNA damage. Notably, a GATA type zinc finger transcription factor, AfSreA (AFLA_132440), which is essential for A. flavus growth and aflatoxin production, was identified. The growth and aflatoxin yield in the ΔAfSreA strain decreased by 94.94 % and 71.82 %, respectively. Additionally, deletion of AfSreA destroyed cell wall integrity and decreased expressions of genes involved in aflatoxin biosynthesis. Taken together, our results identified the antifungal and anti-aflatoxigenic mechanisms of M2M against A. flavus, and confirmed the potential of M2M in protecting peanut and corn from fungal contamination.
Collapse
Affiliation(s)
- Shan Wei
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yige Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Menghan Wu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yangyong Lv
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuaibing Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Huanchen Zhai
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yuansen Hu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, PR China; Food Laboratory of Zhongyuan, Henan University of Technology, Luohe 462300, PR China.
| |
Collapse
|
14
|
Liang L, Wang X, Lan H, Wei S, Lei Y, Zhang S, Zhai H, Hu Y, Lv Y. Comprehensive analysis of aflatoxin B 1 biosynthesis in Aspergillus flavus via transcriptome-wide m 6A methylome response to cycloleucine. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132677. [PMID: 37797576 DOI: 10.1016/j.jhazmat.2023.132677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Aspergillus flavus and its toxic aflatoxins secondary metabolites contaminate food and grains, posing a severe threat to human health and leading to liver cancer. Here, we demonstrated that cycloleucine blocked aflatoxin B1 synthesis by inhibiting N6-methyladenosine (m6A) methylation modification of messenger RNA (mRNA). m6A Methylation Immunoprecipitation Sequencing (m6A MeRIP-Seq)-based comprehensive transcriptome-wide m6A profiling identified 102 differentially expressed genes that underwent m6A modification, of which 22 hypermethylated genes were downregulated and 49 hypomethylated genes were upregulated, suggesting a negative correlation between m6A methylation and gene expression. Notably, cycloleucine inhibited aflatoxin B1 production via multiple targets. The m6A sites of several key genes involved in the aflatoxin B1 biosynthesis pathway were significantly enriched in the coding sequence and around the stop codon, resulting in their downregulation. Furthermore, m6A methylation on genes related to the aflatoxin B1 biosynthesis pathway led to reduced mRNA stability. Cycloleucine inhibition of aflatoxin B1 production highlights its potential as an agent for removing mycotoxins in environmental pollution. ENVIRONMENTAL IMPLICATION: Aflatoxins, highly carcinogenic secondary metabolites produced by Aspergillus flavus, frequently contaminate crops such as peanut, corn, wheat and sesame leading to irreversible loss in the quality and yield of agricultural products and posing serious threats to food safety. Aflatoxins has also been linked to developmental delays and liver cancer in humans. In our study, 'monitoring aflatoxin concentrations and its bioaccumulation in organisms' has been conducted. The results demonstrated that aflatoxin production in A. flavus was completely blocked after cycloleucine treatment. Additionally, we demonstrated that inhibition of aflatoxin was linked to N6-methyladenosine methylation of multiple genes in aflatoxin biosynthesis pathway.
Collapse
Affiliation(s)
- Liuke Liang
- College of biological engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoyan Wang
- College of biological engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haier Lan
- College of biological engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Wei
- College of biological engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Lei
- College of biological engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shuaibing Zhang
- College of biological engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huanchen Zhai
- College of biological engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuansen Hu
- College of biological engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yangyong Lv
- College of biological engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Marcano Y, Montanares M, Gil-Durán C, González K, Levicán G, Vaca I, Chávez R. Pr laeA Affects the Production of Roquefortine C, Mycophenolic Acid, and Andrastin A in Penicillium roqueforti, but It Has Little Impact on Asexual Development. J Fungi (Basel) 2023; 9:954. [PMID: 37888210 PMCID: PMC10607316 DOI: 10.3390/jof9100954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The regulation of fungal specialized metabolism is a complex process involving various regulators. Among these regulators, LaeA, a methyltransferase protein originally discovered in Aspergillus spp., plays a crucial role. Although the role of LaeA in specialized metabolism has been studied in different fungi, its function in Penicillium roqueforti remains unknown. In this study, we employed CRISPR-Cas9 technology to disrupt the laeA gene in P. roqueforti (PrlaeA) aiming to investigate its impact on the production of the specialized metabolites roquefortine C, mycophenolic acid, and andrastin A, as well as on asexual development, because they are processes that occur in the same temporal stages within the physiology of the fungus. Our results demonstrate a substantial reduction in the production of the three metabolites upon disruption of PrlaeA, suggesting a positive regulatory role of LaeA in their biosynthesis. These findings were further supported by qRT-PCR analysis, which revealed significant downregulation in the expression of genes associated with the biosynthetic gene clusters (BGCs) responsible for producing roquefortine C, mycophenolic acid, and andrastin A in the ΔPrlaeA strains compared with the wild-type P. roqueforti. Regarding asexual development, the disruption of PrlaeA led to a slight decrease in colony growth rate, while conidiation and conidial germination remained unaffected. Taken together, our results suggest that LaeA positively regulates the expression of the analyzed BGCs and the production of their corresponding metabolites in P. roqueforti, but it has little impact on asexual development.
Collapse
Affiliation(s)
- Yudethzi Marcano
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (Y.M.); (C.G.-D.); (K.G.); (G.L.)
| | - Mariana Montanares
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (Y.M.); (C.G.-D.); (K.G.); (G.L.)
| | - Kathia González
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (Y.M.); (C.G.-D.); (K.G.); (G.L.)
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (Y.M.); (C.G.-D.); (K.G.); (G.L.)
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (Y.M.); (C.G.-D.); (K.G.); (G.L.)
| |
Collapse
|
16
|
Du Y, Zhu J, Tian Z, Long C. PdStuA Is a Key Transcription Factor Controlling Sporulation, Hydrophobicity, and Stress Tolerance in Penicillium digitatum. J Fungi (Basel) 2023; 9:941. [PMID: 37755049 PMCID: PMC10532665 DOI: 10.3390/jof9090941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Penicillium digitatum has become one of the main pathogens in citrus due to its high spore production and easy spread. In this study, the function of the APSES transcription factor StuA in P. digitatum was characterized, and the results indicated that it was involved in conidium and conidiophore development. No conidiophores were observed in the mycelium of the ∆PdStuA mutant that had grown for two days, while an abnormal conidiophore was found after another two days of incubation, and only small thin phialides as well as a very small number of spores were formed at the top of the hyphae. Moreover, it was observed that the ∆PdStuA mutant showed various defects, such as reduced hydrophobicity and decreased tolerance to cell wall inhibitors and H2O2. Compared to the original P. digitatum, the colony diameter of the ∆PdStuA mutant was not significantly affected, but the growth of aerial hyphae was obviously induced. In in vivo experiments, the spore production of the ∆PdStuA mutant grown on citrus fruit was remarkably decreased; however, there was no significant difference in the lesion diameter between the mutant and original strain. It could be inferred that less spore production might result in reduced spread in citrus, thereby reducing the green mold infection in citrus fruit during storage. This study provided a gene, PdStuA, which played key role in the sporulation of P. digitatum, and the results might provide a reference for the molecular mechanisms of sporulation in P. digitatum.
Collapse
Affiliation(s)
- Yujie Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.Z.)
| | - Jinfan Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.Z.)
| | - Zhonghuan Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.Z.)
| | - Chaoan Long
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Center for Citrus Preservation, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan 430070, China; (Y.D.); (J.Z.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
17
|
Liang L, Zhang W, Hao J, Wang Y, Wei S, Zhang S, Hu Y, Lv Y. Estragole Inhibits Growth and Aflatoxin Biosynthesis of Aspergillus flavus by Affecting Reactive Oxygen Species Homeostasis. Microbiol Spectr 2023; 11:e0134823. [PMID: 37289093 PMCID: PMC10434025 DOI: 10.1128/spectrum.01348-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
A variety of essential oils and edible compounds have been widely recognized for their antifungal activity in recent years. In this study, we explored the antifungal activity of estragole from Pimenta racemosa against Aspergillus flavus and investigated the underlying mechanism of action. The results showed that estragole had significant antifungal activity against A. flavus, with a minimum inhibitory concentration of 0.5 μL/mL against spore germination. Additionally, estragole inhibited the biosynthesis of aflatoxin in a dose-dependent manner, and aflatoxin biosynthesis was significantly inhibited at 0.125 μL/mL. Pathogenicity assays showed that estragole had potential antifungal activity against A. flavus in peanut and corn grains by inhibiting conidia and aflatoxin production. Transcriptomic analysis showed that the differentially expressed genes (DEGs) were mainly related to oxidative stress, energy metabolism, and secondary metabolite synthesis following estragole treatment. Importantly, we experimentally verified reactive oxidative species accumulation following downregulation of antioxidant enzymes, including catalase, superoxide dismutase, and peroxidase. These results suggest that estragole inhibits the growth and aflatoxin biosynthesis of A. flavus by modulating intracellular redox homeostasis. These findings expand our knowledge on the antifungal activity and molecular mechanisms of estragole, and provide a basis for estragole as a potential agent against A. flavus contamination. IMPORTANCE Aspergillus flavus contaminates crops and produces aflatoxins, carcinogenic secondary metabolites which pose a serious threat to agricultural production and animal and human health. Currently, control of A. flavus growth and mycotoxin contamination mainly relies on antimicrobial chemicals, agents with side effects such as toxic residues and the emergence of resistance. With their safety, environmental friendliness, and high efficiency, essential oils and edible compounds have become promising antifungal agents to control growth and mycotoxin biosynthesis in hazardous filamentous fungi. In this study, we explored the antifungal activity of estragole from Pimenta racemosa against A. flavus and investigated its underlying mechanism. The results demonstrated that estragole inhibits the growth and aflatoxin biosynthesis of A. flavus by modulating intracellular redox homeostasis.
Collapse
Affiliation(s)
- Liuke Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Wei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jing Hao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yanyu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
18
|
Zhu Y, Liu T, Wang Y, Chen G, Fang X, Zhou G, Wang J. ChsA, a Class Ⅱ Chitin Synthase, Contributes to Asexual Conidiation, Mycelial Morphology, Cell Wall Integrity, and the Production of Enzymes and Organic Acids in Aspergillus niger. J Fungi (Basel) 2023; 9:801. [PMID: 37623572 PMCID: PMC10455844 DOI: 10.3390/jof9080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Chitin synthases (CHSs) are vital enzymes for the synthesis of chitin and play important and differential roles in fungal development, cell wall integrity, environmental adaptation, virulence, and metabolism in fungi. However, except for ChsC, a class III CHS, little is known about the functions of CHSs in Aspergillus niger, an important fungus that is widely applied in the fermentation industry and food processing, as well as a spoilage fungus of food and a human pathogen. This study showed the important functions of ChsA, a class II CHS, in A. niger using multi-phenotypic and transcriptional analyses under various conditions. The deletion of chsA led to severe defects in conidiation on different media and resulted in the formation of smaller and less compact pellets with less septa in hyphal cells during submerged fermentation. Compared with the WT, the ΔchsA mutants exhibited less chitin content, reduced growth under the stresses of cell wall-disturbing and oxidative agents, more released protoplasts, a thicker conidial wall, decreased production of amylases, pectinases, cellulases, and malic acid, and increased citric acid production. However, ΔchsA mutants displayed insignificant changes in their sensitivity to osmotic agents and infection ability on apple. These findings concurred with the alteration in the transcript levels and enzymatic activities of some phenotype-related genes. Conclusively, ChsA is important for cell wall integrity and mycelial morphology, and acts as a positive regulator of conidiation, cellular responses to oxidative stresses, and the production of malic acid and some enzymes, but negatively regulates the citric acid production in A. niger.
Collapse
Affiliation(s)
- Yunqi Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Tong Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| | - Yingsi Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Guojun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| | - Xiang Fang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| | - Gang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (T.L.); (G.C.); (X.F.)
| |
Collapse
|
19
|
Maud L, Boyer F, Durrieu V, Bornot J, Lippi Y, Naylies C, Lorber S, Puel O, Mathieu F, Snini SP. Effect of Streptomyces roseolus Cell-Free Supernatants on the Fungal Development, Transcriptome, and Aflatoxin B1 Production of Aspergillus flavus. Toxins (Basel) 2023; 15:428. [PMID: 37505697 PMCID: PMC10467112 DOI: 10.3390/toxins15070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Crop contamination by aflatoxin B1 (AFB1), an Aspergillus-flavus-produced toxin, is frequently observed in tropical and subtropical regions. This phenomenon is emerging in Europe, most likely as a result of climate change. Alternative methods, such as biocontrol agents (BCAs), are currently being developed to reduce the use of chemicals in the prevention of mycotoxin contamination. Actinobacteria are known to produce many bioactive compounds, and some of them can reduce in vitro AFB1 concentration. In this context, the present study aims to analyze the effect of a cell-free supernatant (CFS) from Streptomyces roseolus culture on the development of A. flavus, as well as on its transcriptome profile using microarray assay and its impact on AFB1 concentration. Results demonstrated that in vitro, the S. roseolus CFS reduced the dry weight and conidiation of A. flavus from 77% and 43%, respectively, and was therefore associated with a reduction in AFB1 concentration reduction to levels under the limit of quantification. The transcriptomic data analysis revealed that 5198 genes were differentially expressed in response to the CFS exposure and among them 5169 were downregulated including most of the genes involved in biosynthetic gene clusters. The aflatoxins' gene cluster was the most downregulated. Other gene clusters, such as the aspergillic acid, aspirochlorine, and ustiloxin B gene clusters, were also downregulated and associated with a variation in their concentration, confirmed by LC-HRMS.
Collapse
Affiliation(s)
- Louise Maud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Florian Boyer
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France;
| | - Julie Bornot
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Claire Naylies
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Sophie Lorber
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Selma P. Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| |
Collapse
|
20
|
Taylor JA, Fourie T, Powell M, Chianella I. Evidence for some antimicrobial properties of English churchyard lichens. Access Microbiol 2023; 5:acmi000536.v4. [PMID: 37424569 PMCID: PMC10323803 DOI: 10.1099/acmi.0.000536.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 07/11/2023] Open
Abstract
The emergence of multidrug-resistant bacteria has driven the need for novel antibiotics. Our investigations have focussed on lichens as they naturally produce a wide range of unique and very effective defence chemicals. The aim of this study was to evaluate some of the antimicrobial properties of ten common British churchyard lichens. The lichen material was sampled from ten species, namely Caloplaca flavescens, Diploicia canescens, Cladonia fimbriata, Psilolechia lucida, Lecanora campestris subsp. Campestris, Lecanora sulphurea, Pertusaria amara f.amara, Lepraria incana, Porpidia tuberculosa and Xanthoria calcicola. Crude acetone extracts of these lichens were tested against six bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonela typhimurium, Listeria monocytogenes and Lactobacillus acidophilus ) and two fungi (Trichophyton interdigitale and Aspergillus flavus) by the disc-diffusion susceptibility test method. Extracts of Diploicia canescens, Psilolechia lucida, Lecanora sulphurea, Pertusaria amara and Lepraria incana showed clear inhibition of the Gram-positive bacteria tested (S. aureus, L. monocytogenes, L. plantarum). Diploicia canescens, Pertusaria amara and Lepraria incana extracts also inhibited the dermatophyte fungi tested. The Lepraria incana sample tested here was the only extract that showed activity against any of the Gram-negative bacteria tested; it showed inhibition of Pseudomnas aeruginosa. Overall, our results showed that crude extracts of Diploicia canescens and Pertusaria amara had the most potent antimicrobial activity of all the extracts tested. Our results are in general agreement with published findings elsewhere. The activity of the Porpidia tuberculosa margin sample being different from that of the main colony material was an interesting and new finding reported here for the first time.
Collapse
Affiliation(s)
- J. A. Taylor
- E.E.E.S and The Graduate School, The Open University, Walton Hall, Milton Keynes MK 7 6AA, UK
| | - Toscane Fourie
- INSERM Aix-Marseille University, Provence-Alpes-Côte d'Azur, Marseille, France
| | | | | |
Collapse
|
21
|
Nie XY, Xue Y, Li L, Jiang Z, Qin B, Wang Y, Wang S. A functional intact SUMOylation machinery in Aspergillus flavus contributes to fungal and aflatoxin contamination of food. Int J Food Microbiol 2023; 398:110241. [PMID: 37167787 DOI: 10.1016/j.ijfoodmicro.2023.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
SUMO adducts occur in Aspergillus flavus, and are implicated in fungal biology, while the underlying mechanism and the SUMOylation apparatus components in this saprophytic food spoilage mould, remain undefined. Herein, genes encoding SUMOylation cascade enzymes in A. flavus, including two heterodimeric SUMO E1 activating enzymes, a unique SUMO E2 conjugating enzyme, and one of SUMO E3 ligases, were identified and functionally analyzed. Global SUMO adducts immunoassay, multiple morphological comparison, aflatoxin attributes test, fungal infection and transcriptomic analyses collectively revealed that: E1 and E2 were essential for intracellular SUMOylation, and contributed to both stress response and fungal virulence-related events, including sporulation, colonization, aflatoxins biosynthesis; the primary E3 in this fungus, AfSizA, might serve as the molecular linkage of SUMOylation pathway to fungal virulence rather than SUMOylation-mediated stress adaptation. These findings demonstrated that SUMOylation machinery in A. flavus was functionally intact and contributed to multiple pathobiological processes, hence offering ideas and targets to control food contamination by this mycotoxigenic fungus.
Collapse
Affiliation(s)
- Xin-Yi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yang Xue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ling Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhixin Jiang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
22
|
Shi R, Gong P, Luo Q, Chen W, Wang C. Histone Acetyltransferase Rtt109 Regulates Development, Morphogenesis, and Citrinin Biosynthesis in Monascus purpureus. J Fungi (Basel) 2023; 9:jof9050530. [PMID: 37233241 DOI: 10.3390/jof9050530] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Histone acetyltransferase (HAT) has been reported to be pivotal for various physiological processes in many fungi. However, the functions that HAT Rtt109 perform in edible fungi Monascus and the underlying mechanism remains unclear. Here, we identified the rtt109 gene in Monascus, constructed the rtt109 knockout strain (Δrtt109) and its complementary strain (Δrtt109:com) by CRISPR/Cas9 methods, and functionally characterized the roles that Rtt109 play in Monascus. Deletion of rtt109 significantly reduced conidia formation and colony growth, whereas, it increased the yield of Monascus pigments (MPs) and citrinin (CTN). Further real-time quantitative PCR (RT-qPCR) analysis indicated that Rtt109 remarkably affected the transcriptional expression of key genes related to development, morphogenesis, and secondary metabolism of Monascus. Together, our results revealed the critical roles of HAT Rtt109 in Monascus, and enriched our current knowledge of the development and regulation of secondary metabolism in fungi, throwing light on restraining or eliminating citrinin in the development and industrial applications of Monascus.
Collapse
Affiliation(s)
- Ruoyu Shi
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Pengfei Gong
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qiaoqiao Luo
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
23
|
Zhang T, Li HZ, Li WT, Tian D, Ning YN, Liang X, Tan J, Zhao YH, Luo XM, Feng JX, Zhao S. Kinase POGSK-3β modulates fungal plant polysaccharide-degrading enzyme production and development. Appl Microbiol Biotechnol 2023; 107:3605-3620. [PMID: 37119203 DOI: 10.1007/s00253-023-12548-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
The filamentous fungus Penicillium oxalicum secretes integrative plant polysaccharide-degrading enzymes (PPDEs) applicable to biotechnology. Glycogen synthase kinase-3β (GSK-3β) mediates various cellular processes in eukaryotic cells, but the regulatory mechanisms of PPDE biosynthesis in filamentous fungi remain poorly understood. In this study, POGSK-3β (POX_c04478), a homolog of GSK-3β in P. oxalicum, was characterised using biochemical, microbiological and omics approaches. Knockdown of POGSK-3β in P. oxalicum using a copper-responsive promoter replacement system led to 53.5 - 63.6%, 79.0 - 92.8% and 76.8 - 94.7% decreases in the production of filter paper cellulase, soluble starch-degrading enzyme and raw starch-degrading enzyme, respectively, compared with the parental strain ΔKu70. POGSK-3β promoted mycelial growth and conidiation. Transcriptomic profiling and real-time quantitative reverse transcription PCR analyses revealed that POGSK-3β dynamically regulated the expression of genes encoding major PPDEs, as well as fungal development-associated genes. The results broadened our understanding of the regulatory functions of GKS-3β and provided a promising target for genetic engineering to improve PPDE production in filamentous fungi. KEY POINTS: • The roles of glycogen synthase kinase-3β were investigated in P. oxalicum. • POGSK-3β regulated PPDE production, mycelial growth and conidiation. • POGSK-3β controlled the expression of major PPDE genes and regulatory genes.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, 530200, Guangxi, China
| | - Han-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jing Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yan-Hao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
24
|
Pan X, Hao L, Yang C, Lin H, Wu D, Chen X, Zhang M, Ma D, Wang Y, Fu W, Yao Y, Wang S, Zhuang Z. SWD1 epigenetically chords fungal morphogenesis, aflatoxin biosynthesis, metabolism, and virulence of Aspergillus flavus. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131542. [PMID: 37172387 DOI: 10.1016/j.jhazmat.2023.131542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/17/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023]
Abstract
As the main producer of aflatoxins, Aspergillus flavus is also one of the most important causes of invasive and non-invasive aspergillosis. Therefore, it is crucial to unravel the regulatory mechanisms of growth, metabolism, and pathogenicity of A. flavus. SWD1 is highly conserved across species for maintaining COMPASS methyltransferase activity, but the bio-function of SWD1 in A. flavus has not been explored. Through genetic analysis, this study revealed that SWD1 is involved in fungal morphogenesis and AFB1 biosynthesis by regulating the orthodox pathways through H3K4me1-3. Stresses sensitivity and crop models analysis revealed that SWD1 is a key regulator for the resistance of A. flavus to adapt to extreme adverse environments and to colonize crop kernels. It also revealed that the WD40 domain and 25 aa highly conserved sequence are indispensable for SWD1 in the regulation of mycotoxin bio-synthesis and fungal virulence. Metabolomic analysis inferred that SWD1 is crucial for the biosynthesis of numerous primary and secondary metabolites, regulates biological functions by reshaping the whole metabolic process, and may inhibit fungal virulence by inducing the apoptosis of mycelia through the inducer sphingosine. This study elucidates the epigenetic mechanism of SWD1 in regulating fungal pathogenicity and mycotoxin biosynthesis, and provides a potential novel target for controlling the virulence of A. flavus.
Collapse
Affiliation(s)
- Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Key Laboratory of Propagated Sensation along Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou 350003, China
| | - Ling Hao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350014, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjuan Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
25
|
Mohsen E, El-Metwally MA, Ibrahim AA, Soliman MI. Impact of green antioxidants on decreasing the aflatoxins percentage in peanut oil seed ( Arachis hypogaea L.) during storage. Sci Prog 2023; 106:368504231176165. [PMID: 37226455 PMCID: PMC10450326 DOI: 10.1177/00368504231176165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study conducted an experimental investigation to impede the degradation of peanut (Arachis hypogaea L.) seeds and enhance their quality while being stored. The efficacy of eco-friendly chemicals such as ascorbic acid, salicylic acid, acetic acid, and propionic acid in seed preservation was evaluated over a period of six months. After a period of six months of storage in a greenhouse, an examination was conducted on peanut seeds that had undergone treatment. Rhizoctonia was observed after Cephalothorax, whereas Aspergillus, Fusarium, and Penicillium were the prevailing fungi throughout the storage period. The optimal outcomes were obtained from the conversion of acetic acid to propionic acid. The study observed a decline in seed oil, protein, carbohydrates, germination percentage, energy, index, length, vigour index, dead and rotten seeds, rotted seedlings, and surviving healthy seedlings, with an increase in storage duration ranging from zero to six months. The application of 100% propionic acid to peanut seeds throughout the storage duration resulted in decreased occurrences of deceased seeds, decaying seeds, and deteriorated seedlings. Peanut seeds that underwent treatment with green chemical agents of moderate and high intensity were found to be free of aflatoxin B1. The highest levels of chlorophylls a and b, carotenoids, and total phenols were observed in seeds stored in greenhouses and treated with 100% propionic acid and acetic acid extract. The application of propionic acid 100%, acetic acid 100%, salicylic acid 4 g/l and ascorbic acid 4 g/l proved to be the most effective treatments for peanut seeds, exhibiting the lowest total aflatoxin level of 0.40. The correlation coefficient between shoot fresh weight and shoot dry weight was found to be 0.99, whereas the correlation coefficient between root dry weight and shoot length was 0.67. The seed chemical analysis, seedling characteristics, and germination characteristics were subjected to clustering analysis, resulting in the formation of two distinct groups. The first group consisted of germination percentage and energy levels across all time points (0-6 months), while the second group consisted of the remaining characteristics. The findings of this research propose the utilisation of 100% propionic acid as a viable method for preserving peanut seeds and preventing their deterioration during storage. The application of 100% acetic acid has been found to be effective in enhancing the quality of seeds and minimising losses.
Collapse
Affiliation(s)
- Esraa Mohsen
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed A El-Metwally
- Mycological Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Amira A Ibrahim
- Botany and Microbiology Department, Faculty of Science, Al-Arish University, Al-Arish, Egypt
| | - Magda I Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
26
|
Chang PK. A Simple CRISPR/Cas9 System for Efficiently Targeting Genes of Aspergillus Section Flavi Species, Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger. Microbiol Spectr 2023; 11:e0464822. [PMID: 36651760 PMCID: PMC9927283 DOI: 10.1128/spectrum.04648-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| |
Collapse
|
27
|
Wang J, Liang L, Wei S, Zhang S, Hu Y, Lv Y. Histone 2-Hydroxyisobutyryltransferase Encoded by Afngg1 Is Involved in Pathogenicity and Aflatoxin Biosynthesis in Aspergillus flavus. Toxins (Basel) 2022; 15:7. [PMID: 36668827 PMCID: PMC9861817 DOI: 10.3390/toxins15010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Aflatoxin, a carcinogenic secondary metabolite produced by Aspergillus flavus, is a significant threat to human health and agricultural production. Histone 2-hydroxyisobutyrylation is a novel post-translational modification that regulates various biological processes, including secondary metabolism. In this study, we identified the novel histone 2-hydroxyisobutyryltransferase Afngg1 in A. flavus, and explored its role in cell growth, development and aflatoxin biosynthesis. Afngg1 gene deletion markedly decreased lysine 2-hydroxyisobutyrylation modification of histones H4K5 and H4K8 compared with the control strain. Additionally, Afngg1 deletion inhibited mycelial growth of A. flavus, and the number of conidia and hydrophobicity were significantly decreased. Notably, aflatoxin B1 biosynthesis and sclerotia production were completely inhibited in the ΔAfngg1 strain. Furthermore, the pathogenicity of the ΔAfngg1 strain infecting peanut and corn grains was also diminished, including reduced spore production and aflatoxin biosynthesis compared with A. flavus control and Afngg1 complementation strains. Transcriptome analysis showed that, compared with control strains, differentially expressed genes in ΔAfngg1 were mainly involved in chromatin remodelling, cell development, secondary metabolism and oxidative stress. These results suggest that Afngg1 is involved in histone 2-hydroxyisobutyrylation and chromatin modification, and thus affects cell development and aflatoxin biosynthesis in A. flavus. Our results lay a foundation for in-depth research on the 2-hydroxyisobutyrylation modification in A. flavus, and may provide a novel target for aflatoxin contamination prevention.
Collapse
Affiliation(s)
- Jing Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Liuke Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Shuaibing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, Zhengzhou 450001, China
| |
Collapse
|
28
|
Moon H, Han KH, Yu JH. Upstream Regulation of Development and Secondary Metabolism in Aspergillus Species. Cells 2022; 12:cells12010002. [PMID: 36611796 PMCID: PMC9818462 DOI: 10.3390/cells12010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In filamentous fungal Aspergillus species, growth, development, and secondary metabolism are genetically programmed biological processes, which require precise coordination of diverse signaling elements, transcription factors (TFs), upstream and downstream regulators, and biosynthetic genes. For the last few decades, regulatory roles of these controllers in asexual/sexual development and primary/secondary metabolism of Aspergillus species have been extensively studied. Among a wide spectrum of regulators, a handful of global regulators govern upstream regulation of development and metabolism by directly and/or indirectly affecting the expression of various genes including TFs. In this review, with the model fungus Aspergillus nidulans as the central figure, we summarize the most well-studied main upstream regulators and their regulatory roles. Specifically, we present key functions of heterotrimeric G proteins and G protein-coupled receptors in signal transduction), the velvet family proteins governing development and metabolism, LaeA as a global regulator of secondary metabolism, and NsdD, a key GATA-type TF, affecting development and secondary metabolism and provide a snapshot of overall upstream regulatory processes underlying growth, development, and metabolism in Aspergillus fungi.
Collapse
Affiliation(s)
- Heungyun Moon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kap-Hoon Han
- Department of Pharmaceutical Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Systems Biotechnology, KonKuk University, Seoul 05029, Republic of Korea
- Correspondence:
| |
Collapse
|