1
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. JCI Insight 2024; 9:e178050. [PMID: 39114980 PMCID: PMC11383595 DOI: 10.1172/jci.insight.178050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 08/22/2024] Open
Abstract
Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD) is an age-related macular degeneration-like (AMD-like) retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production in retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus that enabled simple, sensitive, and high-throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix, reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium-derived factor). In vivo, treatment of 8-month-old R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is an important demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of retinal degenerative diseases, including potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Antonio J Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gracen E Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Krista N Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa K McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Firoz A, Talwar P. Role of death-associated protein kinase 1 (DAPK1) in retinal degenerative diseases: an in-silico approach towards therapeutic intervention. J Biomol Struct Dyn 2024; 42:5686-5698. [PMID: 37387600 DOI: 10.1080/07391102.2023.2227720] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
The Death-associated protein kinase 1 (DAPK1) has emerged as a crucial player in the pathogenesis of degenerative diseases. As a serine/threonine kinase family member, DAPK1 regulates critical signaling pathways, such as apoptosis and autophagy. In this study, we comprehensively analyzed DAPK1 interactors and enriched molecular functions, biological processes, phenotypic expression, disease associations, and aging signatures to elucidate the molecular networks of DAPK1. Furthermore, we employed a structure-based virtual screening approach using the PubChem database, which enabled the identification of potential bioactive compounds capable of inhibiting DAPK1, including caspase inhibitors and synthetic analogs. Three selected compounds, CID24602687, CID8843795, and CID110869998, exhibited high docking affinity and selectivity towards DAPK1, which were further investigated using molecular dynamics simulations to understand their binding patterns. Our findings establish a connection between DAPK1 and retinal degenerative diseases and highlight the potential of these selected compounds for the development of novel therapeutic strategies. This study provides valuable insights into the molecular mechanisms underlying DAPK1-related diseases, and offers new opportunities for the discovery of effective treatments for retinal degeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arman Firoz
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Megerson E, Kuehn M, Leifer B, Bell JM, Snyder JL, McGraw HF. Kremen1 regulates the regenerative capacity of support cells and mechanosensory hair cells in the zebrafish lateral line. iScience 2024; 27:108678. [PMID: 38205258 PMCID: PMC10776957 DOI: 10.1016/j.isci.2023.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Mechanosensory hair cells in the inner ear mediate the sensations of hearing and balance, and in the specialized lateral line sensory system of aquatic vertebrates, the sensation of water movement. In mammals, hair cells lack the ability to regenerate following damage, resulting in sensory deficits. In contrast, non-mammalian vertebrates, such as zebrafish, can renew hair cells throughout their lifespan. Wnt signaling is required for development of inner ear and lateral line hair cells and regulates regeneration. Kremen1 inhibits Wnt signaling and hair cell formation, though its role in regeneration is unknown. We used a zebrafish kremen1 mutant line to show overactive Wnt signaling results in supernumerary support cells and hair cell regeneration without increased proliferation, in contrast with the previously described role of Wnt signaling during hair cell regeneration. This work allows us to understand the biology of mechanosensory hair cells and how regeneration might be promoted following damage.
Collapse
Affiliation(s)
- Ellen Megerson
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Integrated DNA Technologies, Inc, Coralville, IA 52241, USA
| | - Michael Kuehn
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Ben Leifer
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jon M. Bell
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Julia L. Snyder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Hillary F. McGraw
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
4
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571757. [PMID: 38168310 PMCID: PMC10760106 DOI: 10.1101/2023.12.14.571757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD) is an age-related macular degeneration (AMD)-like retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production from retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus which enabled simple, sensitive, and high throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix (ECM), reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium derived factor). In vivo, treatment of 8 mo R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is the first demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of neurodegenerative diseases, including, potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M. DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Melissa K. McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
5
|
Sunilkumar S, VanCleave AM, McCurry CM, Toro AL, Stevens SA, Kimball SR, Dennis MD. REDD1-dependent GSK3β dephosphorylation promotes NF-κB activation and macrophage infiltration in the retina of diabetic mice. J Biol Chem 2023; 299:104991. [PMID: 37392853 PMCID: PMC10407432 DOI: 10.1016/j.jbc.2023.104991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Increasing evidence supports a role for inflammation in the early development and progression of retinal complications caused by diabetes. We recently demonstrated that the stress response protein regulated in development and DNA damage response 1 (REDD1) promotes diabetes-induced retinal inflammation by sustaining canonical activation of nuclear transcription factor, NF-κB. The studies here were designed to identify signaling events whereby REDD1 promotes NF-κB activation in the retina of diabetic mice. We observed increased REDD1 expression in the retina of mice after 16 weeks of streptozotocin (STZ)-induced diabetes and found that REDD1 was essential for diabetes to suppress inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β) at S9. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented dephosphorylation of GSK3β and increased NF-κB activation in response to hyperglycemic conditions. Expression of a constitutively active GSK3β variant restored NF-κB activation in cells deficient for REDD1. In cells exposed to hyperglycemic conditions, GSK3β knockdown inhibited NF-κB activation and proinflammatory cytokine expression by preventing inhibitor of κB kinase complex autophosphorylation and inhibitor of κB degradation. In both the retina of STZ-diabetic mice and in Müller cells exposed to hyperglycemic conditions, GSK3 inhibition reduced NF-κB activity and prevented an increase in proinflammatory cytokine expression. In contrast with STZ-diabetic mice receiving a vehicle control, macrophage infiltration was not observed in the retina of STZ-diabetic mice treated with GSK3 inhibitor. Collectively, the findings support a model wherein diabetes enhances REDD1-dependent activation of GSK3β to promote canonical NF-κB signaling and the development of retinal inflammation.
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ashley M VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher M McCurry
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Shaunaci A Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
6
|
Megerson E, Kuehn M, Leifer B, Bell J, McGraw HF. Kremen1 regulates the regenerative capacity of support cells and mechanosensory hair cells in the zebrafish lateral line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550825. [PMID: 37546780 PMCID: PMC10402150 DOI: 10.1101/2023.07.27.550825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Mechanosensory hair cells in the inner ear mediate the sensations of hearing and balance, and in a specialize lateral line sensory system of aquatic vertebrates, the sensation of water movement. In mammals, hair cells lack the ability of regenerate following damage, resulting in sensory deficits. In contrast, non-mammalian vertebrates, such zebrafish, can renew hair cells throughout the life of the animal. Wnt signaling is required for development of inner ear and lateral line hair cells and regulates regeneration. Kremen1 inhibits Wnt signaling and hair cell formation, though its role in regeneration has not been established. We use a zebrafish kremen1 mutant line, to show that when Wnt signaling is overactivated in the lateral line, excessive regeneration occurs in the absence of increased proliferation, due to an increase in support cells. This contrasts with the previously described role of Wnt signaling during hair cell regeneration. This work will allow us to understand the biology of mechanosensory hair cells, and how regeneration might be promoted following damage.
Collapse
|