1
|
Mehrabipour M, Nakhaei-Rad S, Dvorsky R, Lang A, Verhülsdonk P, Ahmadian MR, Piekorz RP. SIRT4 as a novel interactor and candidate suppressor of C-RAF kinase in MAPK signaling. Life Sci Alliance 2024; 7:e202302507. [PMID: 38499327 PMCID: PMC10948936 DOI: 10.26508/lsa.202302507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
Cellular responses leading to development, proliferation, and differentiation depend on RAF/MEK/ERK signaling, which integrates and amplifies signals from various stimuli for downstream cellular responses. C-RAF activation has been reported in many types of tumor cell proliferation and developmental disorders, necessitating the discovery of potential C-RAF protein regulators. Here, we identify a novel and specific protein interaction between C-RAF among the RAF kinase paralogs, and SIRT4 among the mitochondrial sirtuin family members SIRT3, SIRT4, and SIRT5. Structurally, C-RAF binds to SIRT4 through the N-terminal cysteine-rich domain, whereas SIRT4 predominantly requires the C-terminus for full interaction with C-RAF. Interestingly, SIRT4 specifically interacts with C-RAF in a pre-signaling inactive (serine 259-phosphorylated) state. Consistent with this finding, the expression of SIRT4 in HEK293 cells results in an up-regulation of pS259-C-RAF levels and a concomitant reduction in MAPK signaling as evidenced by strongly decreased phospho-ERK signals. Thus, we propose an additional extra-mitochondrial function of SIRT4 as a cytosolic tumor suppressor of C-RAF-MAPK signaling, besides its metabolic tumor suppressor role of glutamate dehydrogenase and glutamate levels in mitochondria.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Patrick Verhülsdonk
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Liu L, Hu C, Chen Z, Zhu S, Zhu L. Co-Occurring Thrombotic Thrombocytopenic Purpura and Autoimmune Hemolytic Anemia in a Child Carrying the Pathogenic SHOC2 c.4A>G (p.Ser2Gly) Variant. AMERICAN JOURNAL OF CASE REPORTS 2023; 24:e942377. [PMID: 38019730 PMCID: PMC10697549 DOI: 10.12659/ajcr.942377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND RASopathies involve mutations in genes that encode proteins participating in the RAS-mitogen-activated protein kinase pathway and are a collection of multisystem disorders that clinically overlap. Variants in the SHOC2 gene have been reported in Noonan-like syndrome, which include distinct facial features, short stature, congenital cardiac defects, developmental delays, bleeding disorders, and loose anagen hair. This report is of a 7-year-old girl with the c.4A>G (p.Ser2Gly) variant of the SHOC2 gene, consistent with Noonan-like syndrome, with loose anagen hair, presenting with thrombotic thrombocytopenic purpura and autoimmune hemolytic anemia. CASE REPORT The child had a medical history of 7 hospitalizations at our institution. At the age of 2 months, she underwent surgical correction for ventricular and atrial septal defects. At the age of 2 years, tonsil and adenoid removal surgery was performed, followed by surgery for otitis media at age 5 years. At 7 years, she was hospitalized for the simultaneous occurrence of thrombotic thrombocytopenic purpura and autoimmune hemolytic anemia. The patient displayed short stature and mild intellectual disability. Notable facial features included sparse hair, mild frontal bossing, and low-set ears. Antinuclear antibody levels demonstrated a significant gradual shift. Through trio whole-exome sequencing, a c.4A>G (p.Ser2Gly) variation in the SHOC2 gene was identified. CONCLUSIONS Given the clinical information and genetic testing results, the patient's condition appeared to closely be a type of RASopathy. This report has highlighted the importance of physical, developmental, and genetic testing in children presenting with dysmorphism, developmental delay, and hematological abnormalities.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Chanchan Hu
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhenjie Chen
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Shuzhen Zhu
- Department of Emergency, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Lvchang Zhu
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| |
Collapse
|
3
|
Papadopoulou A, Bountouvi E. Skeletal defects and bone metabolism in Noonan, Costello and cardio-facio-cutaneous syndromes. Front Endocrinol (Lausanne) 2023; 14:1231828. [PMID: 37964950 PMCID: PMC10641803 DOI: 10.3389/fendo.2023.1231828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Noonan, Costello and Cardio-facio-cutaneous syndromes belong to a group of disorders named RASopathies due to their common pathogenetic origin that lies on the Ras/MAPK signaling pathway. Genetics has eased, at least in part, the distinction of these entities as they are presented with overlapping clinical features which, sometimes, become more pronounced with age. Distinctive face, cardiac and skeletal defects are among the primary abnormalities seen in these patients. Skeletal dysmorphisms range from mild to severe and may include anterior chest wall anomalies, scoliosis, kyphosis, short stature, hand anomalies, muscle weakness, osteopenia or/and osteoporosis. Patients usually have increased serum concentrations of bone resorption markers, while markers of bone formation are within normal range. The causative molecular defects encompass the members of the Ras/MAPK/ERK pathway and the adjacent cascades, important for the maintenance of normal bone homeostasis. It has been suggested that modulation of the expression of specific molecules involved in the processes of bone remodeling may affect the osteogenic fate decision, potentially, bringing out new pharmaceutical targets. Currently, the laboratory imprint of bone metabolism on the clinical picture of the affected individuals is not clear, maybe due to the rarity of these syndromes, the small number of the recruited patients and the methods used for the description of their clinical and biochemical profiles.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Clinical Biochemistry, University General Hospital “Attikon”, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
4
|
Bajia D, Derwich K. An In Silico Study Investigating Camptothecin-Analog Interaction with Human Protein Tyrosine Phosphatase, SHP2 (PTPN11). Pharmaceuticals (Basel) 2023; 16:926. [PMID: 37513838 PMCID: PMC10386118 DOI: 10.3390/ph16070926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The human PTPN11 gene encodes for the src tyrosine phosphatase protein (SHP2) is now gaining much attention in many disorders, particularly its oncogenic involvement in many types of cancer. Efforts in developing molecules targeting SHP2 with high efficacy are the future of drug discovery and chemotherapy. However, the interaction of a new camptothecin analog with the catalytic domain of SHP2 protein remains unknown. Therefore, this study aims to provide in silico rationale for the recognition and binding of FL118 and irinotecan with the catalytic domain of human protein tyrosine phosphatase-SHP2 (PTPc-SH2-SHP2, chain A). The docking interaction of the human SHP2 protein's catalytic domain as well as Y279C and R465G mutants with FL118 and irinotecan ligands were calculated and analyzed using the Autodock 4.2 programme, setting the docking grid to target the protein's active site. The camptothecin analog FL118 had the best lowest negative affinity energies with PTPc-SHP2 wildtype and SHP2-Y279C mutant model (-7.54 Kcal/mol and -6.94 Kcal/mol, respectively). Moreover, the protein-ligand complexes revealed several hydrogen bond interactions reflecting the degree of stability that each structure possesses, with the FL118-SHP2-wildtype forming the most stable complex among the structures. In addition, the FL118-SHP2 wildtype complex was validated for RMSD, RMSF, hydrogen bonds, and salt bridges. This revealed that the complex generated became stable over time. This in silico rationale identifies the novel FL118 camptothecin analog as a potent selective inhibitor of PTPc-SH2 domain of SHP2 protein, paving way for further in vitro investigations into the interactions and binding activity of analogs with SHP2 for potential therapeutic applications in PTPN11-associated disorders.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| |
Collapse
|
5
|
Gao X, Kang J, Li X, Chen C, Luo D. Deletion of the tyrosine phosphatase Shp2 in cervical cancer cells promotes reprogramming of glutamine metabolism. FASEB J 2023; 37:e22880. [PMID: 36943407 DOI: 10.1096/fj.202202078rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Shp2 is a nonreceptor protein tyrosine phosphatase that is overexpressed in cervical cancer. However, the role of Shp2 in the regulation of cervical cancer metabolism and tumorigenesis is unclear. EGFR signaling pathways are commonly dysregulated in cervical cancer. We showed that Shp2 knockout in cervical cancer cells decreased EGFR expression and downregulated downstream RAS-ERK activation. Although AKT was activated in Shp2 knockout cells, inhibition of AKT activation could not make cells more sensitive to death. Shp2 depletion inhibited cervical cancer cell proliferation and reduced tumor growth in a xenograft mouse model. 1 H NMR spectroscopic analysis showed that glutamine, glutamate, succinate, creatine, glutathione, and UDP-GlcNAc were significantly changed in Shp2 knockout cells. The intracellular glutamine level was higher in Shp2 knockout cells than in control cells. Further analysis demonstrated that Shp2 knockout promoted glutaminolysis and glutathione production by up-regulating the glutamine metabolism-related genes such as glutaminase (GLS). However, inhibition of GLS did not always make cells sensitive to death, which was dependent on glucose concentration. The level of oxidative phosphorylation was significantly increased, accompanied by an increased generation of reactive oxygen species in Shp2 knockout cells. Shp2 deficiency increased c-Myc and c-Jun expression, which may be related to the upregulation of glutamine metabolism. These findings suggested that Shp2 regulates cervical cancer proliferation, glutamine metabolism, and tumorigenicity.
Collapse
Affiliation(s)
- Xuehui Gao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jie Kang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Xiangke Li
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Chuan Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China
| | - Duqiang Luo
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
6
|
Drenckhahn JD, Nicin L, Akhouaji S, Krück S, Blank AE, Schänzer A, Yörüker U, Jux C, Tombor L, Abplanalp W, John D, Zeiher AM, Dimmeler S, Rupp S. Cardiomyocyte hyperplasia and immaturity but not hypertrophy are characteristic features of patients with RASopathies. J Mol Cell Cardiol 2023; 178:22-35. [PMID: 36948385 DOI: 10.1016/j.yjmcc.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
AIMS RASopathies are caused by mutations in genes that alter the MAP kinase pathway and are marked by several malformations with cardiovascular disorders as the predominant cause of mortality. Mechanistic insights in the underlying pathogenesis in affected cardiac tissue are rare. The aim of the study was to assess the impact of RASopathy causing mutations on the human heart. METHODS AND RESULTS Using single cell approaches and histopathology we analyzed cardiac tissue from children with different RASopathy-associated mutations compared to age-matched dilated cardiomyopathy (DCM) and control hearts. The volume of cardiomyocytes was reduced in RASopathy conditions compared to controls and DCM patients, and the estimated number of cardiomyocytes per heart was ~4-10 times higher. Single nuclei RNA sequencing of a 13-year-old RASopathy patient (carrying a PTPN11 c.1528C > G mutation) revealed that myocardial cell composition and transcriptional patterns were similar to <1 year old DCM hearts. Additionally, immaturity of cardiomyocytes is shown by an increased MYH6/MYH7 expression ratio and reduced expression of genes associated with fatty acid metabolism. In the patient with the PTPN11 mutation activation of the MAP kinase pathway was not evident in cardiomyocytes, whereas increased phosphorylation of PDK1 and its downstream kinase Akt was detected. CONCLUSION In conclusion, an immature cardiomyocyte differentiation status appears to be preserved in juvenile RASopathy patients. The increased mass of the heart in such patients is due to an increase in cardiomyocyte number (hyperplasia) but not an enlargement of individual cardiomyocytes (hypertrophy).
Collapse
Affiliation(s)
- Jörg-Detlef Drenckhahn
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Luka Nicin
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Sara Akhouaji
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Svenja Krück
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Anna Eva Blank
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Uygar Yörüker
- Department of Pediatric Cardiac Surgery, University Hospital Giessen, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Jux
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Tombor
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - Wesley Abplanalp
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - Andreas M Zeiher
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany; German Center for Cardiovascular Research, RheinMain, Frankfurt, Germany
| | - Stefan Rupp
- Department of Pediatric Cardiology, Intensive Care Medicine and Congenital Heart Disease, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|