1
|
Brennan L, Kim HK, Colmenares S, Ego T, Ryu JK, Karpen G. HP1a promotes chromatin liquidity and drives spontaneous heterochromatin compartmentalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.18.618981. [PMID: 39868136 PMCID: PMC11761810 DOI: 10.1101/2024.10.18.618981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Compartmentalization of the nucleus into heterochromatin and euchromatin is highly conserved across eukaryotes. Constitutive heterochromatin (C-Het) constitutes a liquid-like condensate that packages the repetitive regions of the genome through the enrichment of histone modification H3K9me3 and recruitment of its cognate reader protein Heterochromatin Protein-1 (HP1a). The ability for well-ordered nucleosome arrays and HP1a to independently form biomolecular condensates suggests that the emergent material properties of C-Het compartments may contribute to its functions such as force-buffering, dosage-dependent gene silencing, and selective permeability. Using an in vitro reconstitution system we directly assess the contributions of H3K9me3 and HP1a on the biophysical properties of C-Het. In the presence of HP1a, H3K9me3 (Me-) and unmodified (U-) chromatin form co-condensates composed of distinct, immiscible domains. These chromatin domains form spontaneously and are reversible. Independently of HP1a, H3K9me3 modifications are sufficient to increase linker-DNA length within chromatin arrays and slow chromatin condensate growth. HP1a increases the liquidity of chromatin condensates while dramatically differentiating the viscoelastic properties of Me-chromatin versus U-chromatin. Mutating key residues in HP1a show that HP1a interactions with itself and chromatin determine the relative interfacial tension between chromatin compartments, however the formation of condensates is driven by the underlying chromatin. These direct measurements map the energetic landscape that determines C-Het compartmentalization, demonstrating that nuclear compartmentalization is a spontaneous and energetically favorable process in which HP1a plays a critical role in establishing a hierarchy of affinities between H3K9me3-chromatin and unmodified-chromatin.
Collapse
Affiliation(s)
- Lucy Brennan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hyeong-Ku Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Serafin Colmenares
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tatum Ego
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
- Institute of Applied Physics of Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, South Korea
| | - Gary Karpen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of BioEngineering and BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
2
|
Sun T, Korolev N, Lyubartsev AP, Nordenskiöld L. CG modeling of nucleosome arrays reveals the salt-dependent chromatin fiber conformational variability. J Chem Phys 2025; 162:024101. [PMID: 39774881 DOI: 10.1063/5.0242509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction. The internal structure of compacted nucleosome arrays is regulated by the flexible and dynamic histone N-terminal tails. Since DNA is a highly negatively charged polyelectrolyte, electrostatic forces make a decisive contribution to chromatin formation and require the histones, particularly histone tails, to carry a significant positive charge. This also results in an essential role of mobile cations of the cytoplasm (K+, Na+, Mg2+) in regulating electrostatic interactions. Building on a previously successfully established bottom-up coarse-grained (CG) nucleosome model, we have developed a CG nucleosome array (chromatin fiber) model with the explicit presence of mobile ions and studied its conformational variability as a function of Na+ and Mg2+ ion concentration. With progressively elevated ion concentrations, we identified four main conformational states of nucleosome arrays characterized as extended, flexible, nucleosome-clutched, and globular fibers.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm SE-106 91, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
3
|
Jaroniec CP. Structural and dynamic studies of chromatin by solid-state NMR spectroscopy. Curr Opin Struct Biol 2024; 89:102921. [PMID: 39293192 PMCID: PMC11602356 DOI: 10.1016/j.sbi.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Chromatin is a complex of DNA with histone proteins organized into nucleosomes that regulates genome accessibility and controls transcription, replication and repair by dynamically switching between open and compact states as a function of different parameters including histone post-translational modifications and interactions with chromatin modulators. Continuing advances in structural biology techniques including X-ray crystallography, cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy have facilitated studies of chromatin systems, in spite of challenges posed by their large size and dynamic nature, yielding important functional and mechanistic insights. In this review we highlight recent applications of magic angle spinning solid-state NMR - an emerging technique that is uniquely-suited toward providing atomistic information for rigid and flexible regions within biomacromolecular assemblies - to detailed characterization of structure, conformational dynamics and interactions for histone core and tail domains in condensed nucleosomes and oligonucleosome arrays mimicking chromatin at high densities characteristic of the cellular environment.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
4
|
Golembeski A, Lequieu J. A Molecular View into the Structure and Dynamics of Phase-Separated Chromatin. J Phys Chem B 2024; 128:10593-10603. [PMID: 39413416 PMCID: PMC11533178 DOI: 10.1021/acs.jpcb.4c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The organization of chromatin is critical for gene expression, yet the underlying mechanisms responsible for this organization remain unclear. Recent work has suggested that phase separation might play an important role in chromatin organization, yet the molecular forces that drive chromatin phase separation are poorly understood. In this work we interrogate a molecular model of chromatin to quantify the driving forces and thermodynamics of chromatin phase separation. By leveraging a multiscale approach, our molecular model is able to reproduce chromatin's chemical and structural details at the level of a few nanometers, yet remain efficient enough to simulate chromatin phase separation across 100 nm length scales. We first demonstrate that our model can reproduce key experiments of phase separating nucleosomal arrays, and then apply our model to quantify the interactions that drive their formation into chromatin condensates with either liquid- or solid-like material properties. We next use our model to characterize the molecular structure within chromatin condensates and find that this structure is irregularly ordered and is inconsistent with existing 30 nm fiber models. Lastly we examine how post-translational modifications can modulate chromatin phase separation and how the acetylation of chromatin can lead to chromatin decompaction while still preserving phase separation. Taken together, our work provides a molecular view into the structure and dynamics of phase-separated chromatin and provides new insights into how phase separation might manifest in the nucleus of living cells.
Collapse
Affiliation(s)
- Andrew Golembeski
- Department of Chemical and
Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Joshua Lequieu
- Department of Chemical and
Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Chin SY, Chen Y, Zhao L, Liu X, Chng CP, Soman A, Nordenskiöld L, Huang C, Shi X, Xue K. Investigating Different Dynamic pHP1α States in Their KCl-Mediated Liquid-Liquid Phase Separation (LLPS) Using Solid-State NMR (SSNMR) and Molecular Dynamic (MD) Simulations. J Phys Chem B 2024; 128:10451-10459. [PMID: 39387162 DOI: 10.1021/acs.jpcb.4c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chromatin phase separation is dynamically regulated by many factors, such as post-translational modifications and effector proteins, and plays a critical role in genomic activities. The liquid-liquid phase separation (LLPS) of chromatin and/or effector proteins has been observed both in vitro and in vivo. However, the underlying mechanisms are largely unknown, and elucidating the physicochemical properties of the phase-separated complexes remains technically challenging. In this study, we detected dynamic, viscous, and intermediate components within the phosphorylated heterochromatin protein 1α (pHP1α) phase-separated system by using modified solid-state NMR (SSNMR) pulse sequences. The basis of these sequences relies on the different time scale of motion detected by heteronuclear Overhauser effect (hetNOE), scalar coupling-based, and dipolar coupling-based transfer schemes in NMR. In comparison to commonly utilized scalar coupling-based methods for studying the dynamic components in phase-separated systems, hetNOE offers more direct insight into molecular dynamics. NMR signals from the three different states in the protein gel were selectively excited and individually studied. Combined with molecular dynamics (MD) simulations, our findings indicate that at low KCl concentration (30 mM), the protein gel displays reduced molecular motion. Conversely, an increase in molecular motion was observed at a high KCl concentration (150 mM), which we attribute to the resultant intermolecular electrostatic interactions regulated by KCl.
Collapse
Affiliation(s)
- Sze Yuet Chin
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Xinyi Liu
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798 Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798 Singapore
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province 518172, China
| | - Kai Xue
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- School of Physical and Mathematical Science, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
6
|
Yonezawa N, Shindo T, Oda H, Kimura H, Hiraoka Y, Haraguchi T, Yamagata K. Reconstruction of artificial nuclei with nuclear import activity in living mouse oocytes. Genes Cells 2024; 29:820-837. [PMID: 39140385 DOI: 10.1111/gtc.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
In eukaryotes, DNA is housed within the cell nucleus. Molecules required for the formation of a nucleus have been identified using in vitro systems with frog egg extracts and in vivo imaging of somatic cells. However, little is known about the physicochemical factors and conditions required for nuclear formation in mouse oocytes. In this study, using a reconstitution approach with purified DNA, we aimed to determine factors, such as the amount and timing of DNA introduction, required for the formation of nuclei with nuclear transport activity in mouse oocytes. T4 phage DNA (~166 kbp) was microinjected into strontium-activated oocytes to evaluate the conditions appropriate for nuclear formation. Microinjection of 100-500 ng/μL of T4 DNA, but not 20 ng/μL, was sufficient for the formation of nucleus-like structures. Furthermore, microinjection of DNA during metaphase II to telophase II, but not during interphase, was sufficient. Electron and fluorescence microscopy showed that T4 DNA-induced nucleus-like structures had nuclear lamina and nuclear pore complex structures similar to those of natural nuclei, as well as nuclear import activity. These results suggest that exogenous DNA can form artificial nuclei with nuclear transport functions in mouse oocytes, regardless of the sequence or source of the DNA.
Collapse
Affiliation(s)
- Nao Yonezawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| |
Collapse
|
7
|
Carignano MA, Kroeger M, Almassalha LM, Agrawal V, Li WS, Pujadas-Liwag EM, Nap RJ, Backman V, Szleifer I. Local volume concentration, packing domains, and scaling properties of chromatin. eLife 2024; 13:RP97604. [PMID: 39331520 PMCID: PMC11434620 DOI: 10.7554/elife.97604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions. The SR-EV rules of return generate conformationally defined domains observed by single-cell imaging techniques. From nucleosome to chromosome scales, the model captures the overall chromatin organization as a corrugated system, with dense and dilute regions alternating in a manner that resembles the mixing of two disordered bi-continuous phases. This particular organizational topology is a consequence of the multiplicity of interactions and processes occurring in the nuclei, and mimicked by the proposed return rules. Single configuration properties and ensemble averages show a robust agreement between theoretical and experimental results including chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. Model and experimental results suggest that there is an inherent chromatin organization regardless of the cell character and resistant to an external forcing such as RAD21 degradation.
Collapse
Affiliation(s)
- Marcelo A Carignano
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Martin Kroeger
- Magnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH ZurichZurichSwitzerland
| | - Luay M Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial HospitalEvanstonUnited States
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Wing Shun Li
- Applied Physics Program, Northwestern UniversityChicagoUnited States
| | | | - Rikkert J Nap
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern UniversityEvanstonUnited States
- Department of Chemistry, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
8
|
Watson M, Sabirova D, Hardy MC, Pan Y, Carpentier DCJ, Yates H, Wright CJ, Chan WH, Destan E, Stott K. A DNA condensation code for linker histones. Proc Natl Acad Sci U S A 2024; 121:e2409167121. [PMID: 39116133 PMCID: PMC11331069 DOI: 10.1073/pnas.2409167121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Linker histones play an essential role in chromatin packaging by facilitating compaction of the 11-nm fiber of nucleosomal "beads on a string." The result is a heterogeneous condensed state with local properties that range from dynamic, irregular, and liquid-like to stable and regular structures (the 30-nm fiber), which in turn impact chromatin-dependent activities at a fundamental level. The properties of the condensed state depend on the type of linker histone, particularly on the highly disordered C-terminal tail, which is the most variable region of the protein, both between species, and within the various subtypes and cell-type specific variants of a given organism. We have developed an in vitro model system comprising linker histone tail and linker DNA, which although very minimal, displays surprisingly complex behavior, and is sufficient to model the known states of linker histone-condensed chromatin: disordered "fuzzy" complexes ("open" chromatin), dense liquid-like assemblies (dynamic condensates), and higher-order structures (organized 30-nm fibers). A crucial advantage of such a simple model is that it allows the study of the various condensed states by NMR, circular dichroism, and scattering methods. Moreover, it allows capture of the thermodynamics underpinning the transitions between states through calorimetry. We have leveraged this to rationalize the distinct condensing properties of linker histone subtypes and variants across species that are encoded by the amino acid content of their C-terminal tails. Three properties emerge as key to defining the condensed state: charge density, lysine/arginine ratio, and proline-free regions, and we evaluate each separately using a strategic mutagenesis approach.
Collapse
Affiliation(s)
- Matthew Watson
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Dilyara Sabirova
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Megan C. Hardy
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Yuming Pan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | | | - Henry Yates
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Charlotte J. Wright
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - W. H. Chan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Ebru Destan
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| |
Collapse
|
9
|
Nimerovsky E, Sieme D, Rezaei-Ghaleh N. Mobility of sodium ions in agarose gels probed through combined single- and triple-quantum NMR. Methods 2024; 228:55-64. [PMID: 38782295 DOI: 10.1016/j.ymeth.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Metal ions, including biologically prevalent sodium ions, can modulate electrostatic interactions frequently involved in the stability of condensed compartments in cells. Quantitative characterization of heterogeneous ion dynamics inside biomolecular condensates demands new experimental approaches. Here we develop a 23Na NMR relaxation-based integrative approach to probe dynamics of sodium ions inside agarose gels as a model system. We exploit the electric quadrupole moment of spin-3/2 23Na nuclei and, through combination of single-quantum and triple-quantum-filtered 23Na NMR relaxation methods, disentangle the relaxation contribution of different populations of sodium ions inside gels. Three populations of sodium ions are identified: a population with bi-exponential relaxation representing ions within the slow motion regime and two populations with mono-exponential relaxation but at different rates. Our study demonstrates the dynamical heterogeneity of sodium ions inside agarose gels and presents a new experimental approach for monitoring dynamics of sodium and other spin-3/2 ions (e.g. chloride) in condensed environments.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11 D-37077 Göttingen, Germany
| | - Daniel Sieme
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11 D-37077 Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstraße 1 D-40225 Düsseldorf, Germany; Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich D-52428 Jülich, Germany.
| |
Collapse
|
10
|
Carignano M, Kröger M, Almassalha LM, Agrawal V, Li WS, Pujadas-Liwag EM, Nap RJ, Backman V, Szleifer I. Local Volume Concentration, Packing Domains and Scaling Properties of Chromatin. ARXIV 2024:arXiv:2310.02257v3. [PMID: 38495560 PMCID: PMC10942481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions. The SR-EV rules of return generate conformationally-defined domains observed by single cell imaging techniques. From nucleosome to chromosome scales, the model captures the overall chromatin organization as a corrugated system, with dense and dilute regions alternating in a manner that resembles the mixing of two disordered bi-continuous phases. This particular organizational topology is a consequence of the multiplicity of interactions and processes occurring in the nuclei, and mimicked by the proposed return rules. Single configuration properties and ensemble averages show a robust agreement between theoretical and experimental results including chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. Model and experimental results suggest that there is an inherent chromatin organization regardless of the cell character and resistant to an external forcing such as Rad21 degradation.
Collapse
Affiliation(s)
- Marcelo Carignano
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Martin Kröger
- Magnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Luay Matthew Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago IL 60611, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wing Shun Li
- Applied Physics Program, Northwestern, University, Evanston, IL 60208, USA
| | | | - Rikkert J. Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
11
|
Sun T, Korolev N, Minhas V, Mirzoev A, Lyubartsev AP, Nordenskiöld L. Multiscale modeling reveals the ion-mediated phase separation of nucleosome core particles. Biophys J 2024; 123:1414-1434. [PMID: 37915169 PMCID: PMC11163297 DOI: 10.1016/j.bpj.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Due to the vast length scale inside the cell nucleus, multiscale models are required to understand chromatin folding, structure, and dynamics and how they regulate genomic activities such as DNA transcription, replication, and repair. We study the interactions and structure of condensed phases formed by the universal building block of chromatin, the nucleosome core particle (NCP), using bottom-up multiscale coarse-grained (CG) simulations with a model extracted from all-atom MD simulations. In the presence of the multivalent cations Mg(H2O)62+ or CoHex3+, we analyze the internal structures of the NCP aggregates and the contributions of histone tails and ions to the aggregation patterns. We then derive a "super" coarse-grained (SCG) NCP model to study the macroscopic scale phase separation of NCPs. The SCG simulations show the formation of NCP aggregates with Mg(H2O)62+ concentration-dependent densities and sizes. Variation of the CoHex3+ concentrations results in highly ordered lamellocolumnar and hexagonal columnar phases in agreement with experimental data. The results give detailed insights into nucleosome interactions and for understanding chromatin folding in the cell nucleus.
Collapse
Affiliation(s)
- Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Vishal Minhas
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander Mirzoev
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
12
|
Szabó D, Franke V, Bianco S, Batiuk MY, Paul EJ, Kukalev A, Pfisterer UG, Irastorza-Azcarate I, Chiariello AM, Demharter S, Zea-Redondo L, Lopez-Atalaya JP, Nicodemi M, Akalin A, Khodosevich K, Ungless MA, Winick-Ng W, Pombo A. A single dose of cocaine rewires the 3D genome structure of midbrain dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593308. [PMID: 38766140 PMCID: PMC11100777 DOI: 10.1101/2024.05.10.593308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Midbrain dopamine neurons (DNs) respond to a first exposure to addictive drugs and play key roles in chronic drug usage1-3. As the synaptic and transcriptional changes that follow an acute cocaine exposure are mostly resolved within a few days4,5, the molecular changes that encode the long-term cellular memory of the exposure within DNs remain unknown. To investigate whether a single cocaine exposure induces long-term changes in the 3D genome structure of DNs, we applied Genome Architecture Mapping and single nucleus transcriptomic analyses in the mouse midbrain. We found extensive rewiring of 3D genome architecture at 24 hours past exposure which remains or worsens by 14 days, outlasting transcriptional responses. The cocaine-induced chromatin rewiring occurs at all genomic scales and affects genes with major roles in cocaine-induced synaptic changes. A single cocaine exposure triggers extensive long-lasting changes in chromatin condensation in post-synaptic and post-transcriptional regulatory genes, for example the unfolding of Rbfox1 which becomes most prominent 14 days post exposure. Finally, structurally remodeled genes are most expressed in a specific DN sub-type characterized by low expression of the dopamine auto-receptor Drd2, a key feature of highly cocaine-sensitive cells. These results reveal an important role for long-lasting 3D genome remodelling in the cellular memory of a single cocaine exposure, providing new hypotheses for understanding the inception of drug addiction and 3D genome plasticity.
Collapse
Affiliation(s)
- Dominik Szabó
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Vedran Franke
- Bioinformatics & Omics Data Science platform, Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Mykhailo Y. Batiuk
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Eleanor J. Paul
- MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Alexander Kukalev
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Ulrich G. Pfisterer
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Ibai Irastorza-Azcarate
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
| | - Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Samuel Demharter
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Luna Zea-Redondo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Jose P. Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550, Sant Joan d’Alacant, Spain
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Altuna Akalin
- Bioinformatics & Omics Data Science platform, Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, 10115 Berlin, Germany
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Mark A. Ungless
- MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Warren Winick-Ng
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Toronto, Canada
| | - Ana Pombo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
13
|
Nordenskiöld L, Shi X, Korolev N, Zhao L, Zhai Z, Lindman B. Liquid-liquid phase separation (LLPS) in DNA and chromatin systems from the perspective of colloid physical chemistry. Adv Colloid Interface Sci 2024; 326:103133. [PMID: 38547652 DOI: 10.1016/j.cis.2024.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
DNA is a highly charged polyelectrolyte and is prone to associative phase separation driven by the presence of multivalent cations, charged surfactants, proteins, polymers and colloids. The process of DNA phase separation induced by positively charged species is often called DNA condensation. Generally, it refers to either intramolecular DNA compaction (coil-globule transition) or intermolecular DNA aggregation with macroscopic phase separation, but the formation of a DNA liquid crystalline system is also displayed. This has traditionally been described by polyelectrolyte theory and qualitative (Flory-Huggins-based) polymer theory approaches. DNA in the cell nucleus is packed into chromatin wound around the histone octamer (a protein complex comprising two copies each of the four histone proteins H2A, H2B, H3 and H4) to form nucleosomes separated by linker DNA. During the last decade, the phenomenon of the formation of biomolecular condensates (dynamic droplets) by liquid-liquid phase separation (LLPS) has emerged as a generally important mechanism for the formation of membraneless organelles from proteins, nucleic acids and their complexes. DNA and chromatin droplet formation through LLPS has recently received much attention by in vitro as well as in vivo studies that established the importance of this for compartmentalisation in the cell nucleus. Here, we review DNA and chromatin LLPS from a general colloid physical chemistry perspective. We start with a general discussion of colloidal phase separation in aqueous solutions and review the original (pre-LLPS era) work on DNA (macroscopic) phase separation for simpler systems with DNA in the presence of multivalent cations and well-defined surfactants and colloids. Following that, we discuss and illustrate the similarities of such macroscopic phase separation with the general behaviour of LLPS droplet formation by associative phase separation for DNA-protein systems, including chromatin; we also note cases of segregative association. The review ends with a discussion of chromatin LLPS in vivo and its physiological significance.
Collapse
Affiliation(s)
- Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Björn Lindman
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Physical Chemistry, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
14
|
Wang J, Chen Y, Xiao Z, Liu X, Liu C, Huang K, Chen H. Phase Separation of Chromatin Structure-related Biomolecules: A Driving Force for Epigenetic Regulations. Curr Protein Pept Sci 2024; 25:553-566. [PMID: 38551058 DOI: 10.2174/0113892037296216240301074253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 07/25/2024]
Abstract
Intracellularly, membrane-less organelles are formed by spontaneous fusion and fission of macro-molecules in a process called phase separation, which plays an essential role in cellular activities. In certain disease states, such as cancers and neurodegenerative diseases, aberrant phase separations take place and participate in disease progression. Chromatin structure-related proteins, based on their characteristics and upon external stimuli, phase separate to exert functions like genome assembly, transcription regulation, and signal transduction. Moreover, many chromatin structure-related proteins, such as histones, histone-modifying enzymes, DNA-modifying enzymes, and DNA methylation binding proteins, are involved in epigenetic regulations through phase separation. This review introduces phase separation and how phase separation affects epigenetics with a focus on chromatin structure-related molecules.
Collapse
Affiliation(s)
- Jiao Wang
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zixuan Xiao
- ISA Wenhua Wuhan High School, Fenglin Road, Junshan New Town, Wuhan Economics & Technological Development Zone, Wuhan, Hubei 430119, China
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengyu Liu
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Carignano M, Kröger M, Almassalha L, Agrawal V, Li WS, Pujadas EM, Nap RJ, Backman V, Szleifer I. Local Volume Concentration, Packing Domains and Scaling Properties of Chromatin. RESEARCH SQUARE 2023:rs.3.rs-3399177. [PMID: 37886531 PMCID: PMC10602155 DOI: 10.21203/rs.3.rs-3399177/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions that is able to capture the observed behavior across imaging and sequencing based measures of chromatin organization. The SR-EV model takes the return rules of the Self Returning Random Walk, incorporates excluded volume interactions, chain connectivity and expands the length scales range from 10 nm to over 1 micron. The model is computationally fast and we created thousands of configurations that we grouped in twelve different ensembles according to the two main parameters of the model. The analysis of the configurations was done in a way completely analogous to the experimental treatments used to determine chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. We find a robust agreement between the theoretical and experimental results. The overall organization of the model chromatin is corrugated, with dense packing domains alternating with a very dilute regions in a manner that resembles the mixing of two disordered bi-continuous phases. The return rules combined with excluded volume interactions lead to the formation of packing domains. We observed a transition from a short scale regime to a long scale regime occurring at genomic separations of ~ 4 × 104 base pairs or ~ 100 nm in distance. The contact probability reflects this transition with a change in the scaling exponent from larger than -1 to approximately -1. The analysis of the pair correlation function reveals that chromatin organizes following a power law scaling with exponent D ∈ { 2 , 3 } in the transition region between the short and long distance regimes.
Collapse
Affiliation(s)
- Marcelo Carignano
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- These authors contributed equally: Marcelo Carignano. Martin Kröger and Luay Almassalha
| | - Martin Kröger
- Magnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
- These authors contributed equally: Marcelo Carignano. Martin Kröger and Luay Almassalha
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago IL 60611, USA
- These authors contributed equally: Marcelo Carignano. Martin Kröger and Luay Almassalha
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wing Shun Li
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
| | - Emily M. Pujadas
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Rikkert J. Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Shi X, Kannaian B, Prasanna C, Soman A, Nordenskiöld L. Structural and dynamical investigation of histone H2B in well-hydrated nucleosome core particles by solid-state NMR. Commun Biol 2023; 6:672. [PMID: 37355718 PMCID: PMC10290710 DOI: 10.1038/s42003-023-05050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
H2A-H2B dimer is a key component of nucleosomes and an important player in chromatin biology. Here, we characterized the structure and dynamics of H2B in precipitated nucleosome core particles (NCPs) with a physiologically relevant concentration using solid-state NMR. Our recent investigation of H3-H4 tetramer determined its unique dynamic properties and the present work provides a deeper understanding of the previously observed dynamic networks in NCP that is potentially functionally significant. Nearly complete 13C, 15N assignments were obtained for H2B R30-A121, which permit extracting unprecedented detailed structural and amino-acid site-specific dynamics. The derived structure of H2B in the well-hydrated NCP sample agrees well with that of X-ray crystals. Dynamics at different timescales were determined semi-quantitatively for H2B in a site-specific manner. Particularly, higher millisecond-microsecond dynamics are observed for H2B core regions including partial α1, L1, partial α2, and partial L3. The analysis of these regions in the context of the tertiary structure reveals the clustering of dynamical residues. Overall, this work fills a gap to a complete resonance assignment of all four histones in nucleosomes and delineates that the dynamic networks in NCP extend to H2B, which suggests a potential mechanism to couple histone core with distant DNA to modulate the DNA activities.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, China.
| | - Bhuvaneswari Kannaian
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chinmayi Prasanna
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|