1
|
Wang Y, Li X, Gang Q, Huang Y, Liu M, Zhang H, Shen S, Qi Y, Zhang J. Pathomics and single-cell analysis of papillary thyroid carcinoma reveal the pro-metastatic influence of cancer-associated fibroblasts. BMC Cancer 2024; 24:710. [PMID: 38858612 PMCID: PMC11163752 DOI: 10.1186/s12885-024-12459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is globally prevalent and associated with an increased risk of lymph node metastasis (LNM). The role of cancer-associated fibroblasts (CAFs) in PTC remains unclear. METHODS We collected postoperative pathological hematoxylin-eosin (HE) slides from 984 included patients with PTC to analyze the density of CAF infiltration at the invasive front of the tumor using QuPath software. The relationship between CAF density and LNM was assessed. Single-cell RNA sequencing (scRNA-seq) data from GSE193581 and GSE184362 datasets were integrated to analyze CAF infiltration in PTC. A comprehensive suite of in vitro experiments, encompassing EdU labeling, wound scratch assays, Transwell assays, and flow cytometry, were conducted to elucidate the regulatory role of CD36+CAF in two PTC cell lines, TPC1 and K1. RESULTS A significant correlation was observed between high fibrosis density at the invasive front of the tumor and LNM. Analysis of scRNA-seq data revealed metastasis-associated myoCAFs with robust intercellular interactions. A diagnostic model based on metastasis-associated myoCAF genes was established and refined through deep learning methods. CD36 positive expression in CAFs can significantly promote the proliferation, migration, and invasion abilities of PTC cells, while inhibiting the apoptosis of PTC cells. CONCLUSION This study addresses the significant issue of LNM risk in PTC. Analysis of postoperative HE pathological slides from a substantial patient cohort reveals a notable association between high fibrosis density at the invasive front of the tumor and LNM. Integration of scRNA-seq data comprehensively analyzes CAF infiltration in PTC, identifying metastasis-associated myoCAFs with strong intercellular interactions. In vitro experimental results indicate that CD36 positive expression in CAFs plays a promoting role in the progression of PTC. Overall, these findings provide crucial insights into the function of CAF subset in PTC metastasis.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Xin Li
- Department of Head and Neck Surgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | - Qingwei Gang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Yinde Huang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401147, China
| | - Mingyu Liu
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Han Zhang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Shikai Shen
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Yao Qi
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China
| | - Jian Zhang
- Department of Vascular and Thyroid Surgery, The First Hospital, China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
2
|
Alves LF, da Silva IN, de Mello DC, Fuziwara CS, Guil S, Esteller M, Geraldo MV. Epigenetic Regulation of DLK1-DIO3 Region in Thyroid Carcinoma. Cells 2024; 13:1001. [PMID: 38920632 PMCID: PMC11201930 DOI: 10.3390/cells13121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Non-coding RNAs (ncRNAs) have emerged as pivotal regulators in cellular biology, dispelling their former perception as 'junk transcripts'. Notably, the DLK1-DIO3 region harbors numerous ncRNAs, including long non-coding RNAs (lncRNAs) and over 50 microRNA genes. While papillary thyroid cancer showcases a pervasive decrease in DLK1-DIO3-derived ncRNA expression, the precise mechanisms driving this alteration remain elusive. We hypothesized that epigenetic alterations underlie shifts in ncRNA expression during thyroid cancer initiation and progression. This study aimed to elucidate the epigenetic mechanisms governing DLK1-DIO3 region expression in this malignancy. We have combined the analysis of DNA methylation by bisulfite sequencing together with that of histone modifications through ChIP-qPCR to gain insights into the epigenetic contribution to thyroid cancer in cell lines representing malignancies with different genetic backgrounds. Our findings characterize the region's epigenetic signature in thyroid cancer, uncovering distinctive DNA methylation patterns, particularly within CpG islands on the lncRNA MEG3-DMR, which potentially account for its downregulation in tumors. Pharmacological intervention targeting DNA methylation combined with histone deacetylation restored ncRNA expression. These results contribute to the understanding of the epigenetic mechanisms controlling the DLK1-DIO3 region in thyroid cancer, highlighting the combined role of DNA methylation and histone marks in regulating the locus' expression.
Collapse
Affiliation(s)
- Letícia F. Alves
- Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain; (L.F.A.)
| | - Isabelle N. da Silva
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Sao Paulo 13083-863, Brazil
| | - Diego C. de Mello
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Cesar S. Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain; (L.F.A.)
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain; (L.F.A.)
| | - Murilo V. Geraldo
- Department of Structural and Functional Biology, University of Campinas (UNICAMP), Sao Paulo 13083-863, Brazil
| |
Collapse
|
3
|
Huang Y, Lin P, Liao J, Liang F, Han P, Fu S, Jiang Y, Yang Z, Tan N, Huang J, Chen R, Ouyang N, Huang X. Next-generation sequencing identified that RET variation associates with lymph node metastasis and the immune microenvironment in thyroid papillary carcinoma. BMC Endocr Disord 2024; 24:68. [PMID: 38734621 PMCID: PMC11088169 DOI: 10.1186/s12902-024-01586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND To date, although most thyroid carcinoma (THCA) achieves an excellent prognosis, some patients experience a rapid progression episode, even with differentiated THCA. Nodal metastasis is an unfavorable predictor. Exploring the underlying mechanism may bring a deep insight into THCA. METHODS A total of 108 THCA from Chinese patients with next-generation sequencing (NGS) were recruited. It was used to explore the gene alteration spectrum of THCA and identify gene alterations related to nodal metastasis in papillary thyroid carcinoma (PTC). The Cancer Genome Atlas THCA cohort was further studied to elucidate the relationship between specific gene alterations and tumor microenvironment. A pathway enrichment analysis was used to explore the underlying mechanism. RESULTS Gene alteration was frequent in THCA. BRAF, RET, POLE, ATM, and BRCA1 were the five most common altered genes. RET variation was positively related to nodal metastasis in PTC. RET variation is associated with immune cell infiltration levels, including CD8 naïve, CD4 T and CD8 T cells, etc. Moreover, Step 3 and Step 4 of the cancer immunity cycle (CIC) were activated, whereas Step 6 was suppressed in PTC with RET variation. A pathway enrichment analysis showed that RET variation was associated with several immune-related pathways. CONCLUSION RET variation is positively related to nodal metastasis in Chinese PTC, and anti-tumor immune response may play a role in nodal metastasis triggered by RET variation.
Collapse
Affiliation(s)
- Yongsheng Huang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Peiliang Lin
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianwei Liao
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Faya Liang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ping Han
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Sha Fu
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuanling Jiang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhifan Yang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ni Tan
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jinghua Huang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Renhui Chen
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Xiaoming Huang
- Department of Otolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Hu X, Yu J, Chen M, Pang R. PLK4 reflects extrathyroidal invasion, high tumor stage and poor prognosis in papillary thyroid carcinoma patients. Biomark Med 2024; 18:169-179. [PMID: 38440866 DOI: 10.2217/bmm-2023-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Objective: This study aimed to assess the value of PLK4 as a biomarker in papillary thyroid carcinoma (PTC). Methods: This study reviewed 230 PTC patients receiving surgical resections. PLK4 was detected in tumor tissues and samples of normal thyroid gland tissues by immunohistochemistry. Results: PLK4 was elevated in tumor tissues versus normal thyroid gland tissues (p < 0.001). Tumor PLK4 was linked with extrathyroidal invasion (p = 0.036), higher pathological tumor stage (p = 0.030), node stage (p = 0.045) and tumor/node/metastasis stage (p = 0.022) in PTC patients. Tumor PLK4 immunohistochemistry score >3 was linked with shortened disease-free survival (p = 0.026) and overall survival (p = 0.028) and independently predicted poorer disease-free survival (hazard ratio: 2.797; p = 0.040). Conclusion: Tumor PLK4 reflects extrathyroidal invasion, higher tumor stage and shortened survival in PTC.
Collapse
Affiliation(s)
- Xiaonan Hu
- Head & Neck Radiotherapy Ward, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiawei Yu
- Department of Head & Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengshi Chen
- Department of Head & Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Rui Pang
- Department of Head & Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Liu Q, Li Y, Hao Y, Fan W, Liu J, Li T, Liu L. Multi-modal ultrasound multistage classification of PTC cervical lymph node metastasis via DualSwinThyroid. Front Oncol 2024; 14:1349388. [PMID: 38434683 PMCID: PMC10906093 DOI: 10.3389/fonc.2024.1349388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Objective This study aims to predict cervical lymph node metastasis in papillary thyroid carcinoma (PTC) patients with high accuracy. To achieve this, we introduce a novel deep learning model, DualSwinThyroid, leveraging multi-modal ultrasound imaging data for prediction. Materials and methods We assembled a substantial dataset consisting of 3652 multi-modal ultrasound images from 299 PTC patients in this retrospective study. The newly developed DualSwinThyroid model integrates various ultrasound modalities and clinical data. Following its creation, we rigorously assessed the model's performance against a separate testing set, comparing it with established machine learning models and previous deep learning approaches. Results Demonstrating remarkable precision, DualSwinThyroid achieved an AUC of 0.924 and an 96.3% accuracy on the test set. The model efficiently processed multi-modal data, pinpointing features indicative of lymph node metastasis in thyroid nodule ultrasound images. It offers a three-tier classification that aligns each level with a specific surgical strategy for PTC treatment. Conclusion DualSwinThyroid, a deep learning model designed with multi-modal ultrasound radiomics, effectively estimates the degree of cervical lymph node metastasis in PTC patients. In addition, it also provides early, precise identification and facilitation of interventions for high-risk groups, thereby enhancing the strategic selection of surgical approaches in managing PTC patients.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Yue Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanhong Hao
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenwen Fan
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingjing Liu
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Liu
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
DeSouza NR, Quaranto D, Carnazza M, Jarboe T, Tiwari RK, Geliebter J. Interactome of Long Non-Coding RNAs: Transcriptomic Expression Patterns and Shaping Cancer Cell Phenotypes. Int J Mol Sci 2023; 24:9914. [PMID: 37373059 PMCID: PMC10298192 DOI: 10.3390/ijms24129914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
RNA biology has gained extensive recognition in the last two decades due to the identification of novel transcriptomic elements and molecular functions. Cancer arises, in part, due to the accumulation of mutations that greatly contribute to genomic instability. However, the identification of differential gene expression patterns of wild-type loci has exceeded the boundaries of mutational study and has significantly contributed to the identification of molecular mechanisms that drive carcinogenic transformation. Non-coding RNA molecules have provided a novel avenue of exploration, providing additional routes for evaluating genomic and epigenomic regulation. Of particular focus, long non-coding RNA molecule expression has been demonstrated to govern and direct cellular activity, thus evidencing a correlation between aberrant long non-coding RNA expression and the pathological transformation of cells. lncRNA classification, structure, function, and therapeutic utilization have expanded cancer studies and molecular targeting, and understanding the lncRNA interactome aids in defining the unique transcriptomic signatures of cancer cell phenotypes.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| |
Collapse
|
7
|
Song M, Liu Q, Sun W, Zhang H. Crosstalk between Thyroid Carcinoma and Tumor-Correlated Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2023; 15:2863. [PMID: 37345200 DOI: 10.3390/cancers15102863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Thyroid cancer (TC) is the most common malignancy in the endocrine system. Although most TC can achieve a desirable prognosis, some refractory thyroid carcinomas, including radioiodine-refractory differentiated thyroid cancer, as well as anaplastic thyroid carcinoma, face a myriad of difficulties in clinical treatment. These types of tumors contribute to the majority of TC deaths due to limited initial therapy, recurrence, and metastasis of the tumor and tumor resistance to current clinically targeted drugs, which ultimately lead to treatment failure. At present, a growing number of studies have demonstrated crosstalk between TC and tumor-associated immune cells, which affects tumor deterioration and metastasis through distinct signal transduction or receptor activation. Current immunotherapy focuses primarily on cutting off the interaction between tumor cells and immune cells. Since the advent of immunotherapy, scholars have discovered targets for TC immunotherapy, which also provides new strategies for TC treatment. This review methodically and intensively summarizes the current understanding and mechanism of the crosstalk between distinct types of TC and immune cells, as well as potential immunotherapy strategies and clinical research results in the area of the tumor immune microenvironment. We aim to explore the current research advances to formulate better individualized treatment strategies for TC patients and to provide clues and references for the study of potential immune checkpoints and the development of immunotherapy technologies.
Collapse
Affiliation(s)
- Mingyuan Song
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Qi Liu
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang 110001, China
| |
Collapse
|