1
|
Hanada K, Kawada K, Obama K. Targeting Asparagine Metabolism in Solid Tumors. Nutrients 2025; 17:179. [PMID: 39796613 PMCID: PMC11722615 DOI: 10.3390/nu17010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Reprogramming of energy metabolism to support cellular growth is a "hallmark" of cancer, allowing cancer cells to balance the catabolic demands with the anabolic needs of producing the nucleotides, amino acids, and lipids necessary for tumor growth. Metabolic alterations, or "addiction", are promising therapeutic targets and the focus of many drug discovery programs. Asparagine metabolism has gained much attention in recent years as a novel target for cancer therapy. Asparagine is widely used in the production of other nutrients and plays an important role in cancer development. Nutritional inhibition therapy targeting asparagine has been used as an anticancer strategy and has shown success in the treatment of leukemia. However, in solid tumors, asparagine restriction alone does not provide ideal therapeutic efficacy. Tumor cells initiate reprogramming processes in response to asparagine deprivation. This review provides a comprehensive overview of asparagine metabolism in cancers. We highlight the physiological role of asparagine and current advances in improving survival and overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Keita Hanada
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (K.H.); (K.O.)
- Department of Surgery, Rakuwakai Otowa Hospital, Kyoto 607-8062, Japan
| | - Kenji Kawada
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (K.H.); (K.O.)
- Department of General Surgery, Kurashiki Central Hospital, Kurashiki 710-8602, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (K.H.); (K.O.)
| |
Collapse
|
2
|
Yu Y, Hai Y, Zhou H, Bao W, Hu X, Gao Y, Wu J. METTL3 Inhibition Suppresses Cell Growth and Survival in Colorectal Cancer via ASNS Downregulation. J Cancer 2024; 15:4853-4865. [PMID: 39132158 PMCID: PMC11310885 DOI: 10.7150/jca.96760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/29/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Colorectal cancer (CRC) presents a significant global health burden, with high rates of incidence and mortality, and an urgent need to improve prognosis. STM2457, a novel small molecule inhibitor specific for N6-methyladenosine (m6A) catalytic enzyme Methyltransferase-like 3 (METTL3) has implicated significant treatment potentials in a few of types of cancer. However, its impact and underlying mechanism are still unclear in CRC cells. Methods: We used CCK-8 and colony formation assay to observe cell growth, flow cytometry and TUNEL approaches to detect cell apoptosis under the treatment of STM2457 on CRC cells in vitro or in vivo. RNA-sequencing, qRT-PCR and western blotting were performed to explore downstream effectors of STM2457. Messenger RNA stability was evaluated by qRT-PCR after treatment with actinomycin D. The methylated RNA immunoprecipitation (MeRIP) qPCR, dual-luciferase reporter analyses and m6A dot blotting were carried out to measure the m6A modification. Associated gene expression pattern and clinical relevance in CRC clinical tissue samples were analyzed using online database. Results: STM2457 exhibited a strong influence on cell growth suppression and apoptosis of CRC cells in vitro and subcutaneous xenograft growth in vivo. Asparagine synthetase (ASNS) was markedly downregulated upon STM2457 treatment or METTL3 knockdown and exogenous overexpression of ASNS could rescue the biological defects induced by STM2457. Mechanistically, the downregulation of ASNS by STM2457 may be due to the decrease of m6A modification level in ASNS mRNA mediated by METTL3. Conclusions: Our findings suggest that STM2457 may serve as a potential therapeutic agent and ASNS may be a new promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Yang Yu
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yanan Hai
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hongfeng Zhou
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Wenfang Bao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaowei Hu
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jin Wu
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
3
|
Fontes MG, Silva C, Roldán WH, Monteiro G. Exploring the potential of asparagine restriction in solid cancer treatment: recent discoveries, therapeutic implications, and challenges. Med Oncol 2024; 41:176. [PMID: 38879707 DOI: 10.1007/s12032-024-02424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
Asparagine is a non-essential amino acid crucial for protein biosynthesis and function, and therefore cell maintenance and growth. Furthermore, this amino acid has an important role in regulating several metabolic pathways, such as tricarboxylic acid cycle and the urea cycle. When compared to normal cells, tumor cells typically present a higher demand for asparagine, making it a compelling target for therapy. In this review article, we investigate different facets of asparagine bioavailability intricate role in malignant tumors raised from solid organs. We take a comprehensive look at asparagine synthetase expression and regulation in cancer, including the impact on tumor growth and metastasis. Moreover, we explore asparagine depletion through L-asparaginase as a potential therapeutic method for aggressive solid tumors, approaching different formulations of the enzyme and combinatory therapies. In summary, here we delve into studies about endogenous and exogenous asparagine availability in solid cancers, analyzing therapeutic implications and future challenges.
Collapse
Affiliation(s)
- Marina Gabriel Fontes
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Silva
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - William Henry Roldán
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Pan Y, Suzuki T, Sakai K, Hirano Y, Ikeda H, Hattori A, Dohmae N, Nishio K, Kakeya H. Bisabosqual A: A novel asparagine synthetase inhibitor suppressing the proliferation and migration of human non-small cell lung cancer A549 cells. Eur J Pharmacol 2023; 960:176156. [PMID: 38059445 DOI: 10.1016/j.ejphar.2023.176156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023]
Abstract
Asparagine synthetase (ASNS) is a crucial enzyme for the de novo biosynthesis of endogenous asparagine (Asn), and ASNS shows the positive relationship with the growth of several solid tumors. Most of ASNS inhibitors are analogs of transition-state in ASNS reaction, but their low cell permeability hinders their anticancer activity. Therefore, novel ASNS inhibitors with a new pharmacophore urgently need to be developed. In this study, we established and applied a system for in vitro screening of ASNS inhibitors, and found a promising unique bisabolane-type meroterpenoid molecule, bisabosqual A (Bis A), able to covalently modify K556 site of ASNS protein. Bis A targeted ASNS to suppress cell proliferation of human non-small cell lung cancer A549 cells and exhibited a synergistic effect with L-asparaginase (L-ASNase). Mechanistically, Bis A promoted oxidative stress and apoptosis, while inhibiting autophagy, cell migration and epithelial-mesenchymal transition (EMT), impeding cancer cell development. Moreover, Bis A induced negative feedback pathways containing the GCN2-eIF2α-ATF4, PI3K-AKT-mTORC1 and RAF-MEK-ERK axes, but combination treatment of Bis A and rapamycin/torin-1 overcame the potential drug resistance triggered by mTOR pathways. Our study demonstrates that ASNS inhibition is promising for cancer chemotherapy, and Bis A is a potential lead ASNS inhibitor for anticancer development.
Collapse
Affiliation(s)
- Yanjun Pan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yoshinori Hirano
- Graduate School of Science and Technology, Keio University, Kohoku, Yokohama, 223-8522, Japan
| | - Hiroaki Ikeda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Akira Hattori
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Jiao Y, Peng X, Wang Y, Hao Z, Chen L, Wu M, Zhang Y, Li J, Li W, Zhan X. Malignant ascites supernatant enhances the proliferation of gastric cancer cells partially via the upregulation of asparagine synthetase. Oncol Lett 2023; 26:418. [PMID: 37664666 PMCID: PMC10472050 DOI: 10.3892/ol.2023.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/09/2023] [Indexed: 09/05/2023] Open
Abstract
Malignant ascites (MA) is a common manifestation of advanced gastric cancer (GC) with peritoneal metastasis (PM), which usually indicates a poor prognosis. The present study aimed to explore the effects of MA, a unique microenvironment of PM, on the proliferation of cancer cells and investigate the underlying mechanisms. Ex vivo experiments demonstrated that GC cells treated with MA exhibited enhanced proliferation. RNA sequencing indicated that asparagine synthetase (ASNS) was one of the differentially expressed genes in GC cells following incubation with MAs. Furthermore, the present study suggested that MA induced an upregulation of ASNS expression and the stimulatory effect of MA on cancer cell proliferation was alleviated upon ASNS downregulation. Activating transcription factor 4 (ATF4), a pivotal transcription factor regulating ASNS, was upregulated when cells were treated with MA supernatant. After ATF4 knockdown, the proliferation of MA-treated GC cells and the expression of ASNS decreased. In addition, the decline in the proliferation of the ATF4-downregulated AGS GC cell line was rescued by ASNS upregulation. The findings indicated that MA could promote the proliferation of GC cells via activation of the ATF4-ASNS axis. Hence, it may be a potential target for treating GC with PM and MA.
Collapse
Affiliation(s)
- Yuan Jiao
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yujie Wang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Zhibin Hao
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Ling Chen
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yingyi Zhang
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Jie Li
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai 200433, P.R. China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|