1
|
Zhou X, Chen Y, Kang X, Zhao A, Yang S. Transcriptome and Proteome Analyses Revealed Differences in JEV-Infected PK-15 Cells in Response to Ferroptosis Agonists and Antagonists. Animals (Basel) 2024; 14:3516. [PMID: 39682481 DOI: 10.3390/ani14233516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Epidemic encephalitis B caused by Japanese encephalitis virus (JEV) is a common zoonotic disease that poses threats to both pigs and humans. The cellular defense mechanism is closely tied to the body's resistance to viral invasion. Regulated cell death, such as ferroptosis, is a strategy employed by host cells to defend against viral invasions. To understand the effect of ferroptosis on the proliferation of JEV, experimentally infected PK15 cells were treated with a ferroptosis agonist or antagonist. The results indicated that the ferroptosis agonist can suppress JEV proliferation, whereas the ferroptosis antagonist promotes JEV proliferation. Functional enrichment analysis showed that the ferroptosis agonist Erastin and antagonist SP600125 could affect JEV proliferation through the TNF, IL-17, Toll-like receptor, PI3K-AKT, and chemokine signaling pathways, as well as ECM-receptor interactions. Combined transcriptome and proteome analyses revealed 31 important genes, which are significantly associated with ferroptosis and the inflammatory response. Our results provide a better understanding of the molecular mechanisms through which ferroptosis affects the proliferation of JEV.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Yiwei Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Xinyao Kang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu Road, Hangzhou 311300, China
| |
Collapse
|
2
|
Wu A, Yang H, Xiao T, Gu W, Li H, Chen P. COPZ1 regulates ferroptosis through NCOA4-mediated ferritinophagy in lung adenocarcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130706. [PMID: 39181476 DOI: 10.1016/j.bbagen.2024.130706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Ferroptosis, a type of autophagy-dependent cell death, has been implicated in the pathogenesis of lung adenocarcinoma (LUAD). This study aimed to investigate the involvement of coatomer protein complex I subunit zeta 1 (COPZ1) in ferroptosis and ferritinophagy in LUAD. METHODS Publicly available human LUAD sample data were obtained from the TCGA database to analyze the association of COPZ1 expression with LUAD grade and patient survival. Clinical samples of LUAD and para-carcinoma tissues were collected. COPZ1-deficient LUAD cell model and xenograft model were established. These models were analyzed to evaluate tumor growth, lipid peroxidation levels, mitochondrial structure, autophagy activation, and iron metabolism. RESULTS High expression of COPZ1 was indicative of malignancy and poor overall survival. Clinical LUAD tissues showed increased COPZ1 expression and decreased nuclear receptor coactivator 4 (NCOA4) expression. COPZ1 knockdown inhibited xenograft tumor growth and induced apoptosis. COPZ1 knockdown elevated the levels of ROS, Fe2+ and lipid peroxidation. COPZ1 knockdown also caused mitochondrial shrinkage. Liproxstatin-1, deferoxamine, and z-VAD-FMK reversed the effects of COPZ1 knockdown on LUAD cell proliferation and ferroptosis. Furthermore, COPZ1 was directly bound to NCOA4. COPZ1 knockdown restricted FTH1 expression and promoted NCOA4 and LC3 expression. NCOA4 knockdown reversed the regulation of iron metabolism, lipid peroxidation, and mitochondrial structure induced by COPZ1 knockdown. COPZ1 knockdown induced the translocation of ferritin to lysosomes for degradation, whereas NCOA4 knockdown disrupted this process. CONCLUSION This study provides novel evidence that COPZ1 regulates NCOA4-mediated ferritinophagy and ferroptosis. These findings provide new insights into the pathogenesis and potential treatment of LUAD.
Collapse
Affiliation(s)
- Anbang Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongmin Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wangnin Gu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - He Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; College of pharmacy, Changsha Medical University, Changsha 410219, China.
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
3
|
Jawed R, Bhatti H, Khan A. Genetic profile of ferroptosis in non-small cell lung carcinoma and pharmaceutical options for ferroptosis induction. Clin Transl Oncol 2024:10.1007/s12094-024-03754-4. [PMID: 39460894 DOI: 10.1007/s12094-024-03754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths and the second most commonly diagnosed malignancy worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell LC (LUSCC) are the most common subtypes of non-small cell LC (NSCLC). Early diagnosis of LC can be challenging due to a lack of biomarkers. The overall survival (OS) of patients with NSCLC is still poor despite the enormous efforts that have been made to develop novel treatments. Understanding fundamental molecular and genetic mechanisms is necessary to develop new therapeutic approaches for NSCLC. A recently identified type of programmed cell death known as ferroptosis is one potential approach. Ferroptosis causes oxidative damage and the death of cancerous cells by peroxidizing unsaturated phospholipids and accumulating reactive oxygen species (ROS) in an iron-dependent manner. Ferroptosis-related gene (FRG) signatures have recently been evaluated for their ability to predict patient OS and prognosis. These analyses show FRGs are involved in cancer progression, and may serve as promising biomarkers for tumor diagnosis and therapy. Moreover, we summarize the current pharmaceutical options of ferroptosis induction and their underlying molecular mechanism in LC. Therefore, this review aims to provide a comprehensive summary of FRG-based prognostic models, their associated metabolic and signaling pathways, and promising therapeutic options for ferroptosis induction in NSCLC.
Collapse
Affiliation(s)
- Rohil Jawed
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| | - Huma Bhatti
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Adnan Khan
- Clinical and Molecular Labs, Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN), KDA Scheme 33 Near Safoora Chowk, Karachi, Pakistan
| |
Collapse
|
4
|
Yao L, Liu L, Xu W, Xi H, Lin S, Piao G, Liu Y, Guo J, Wang X. mRNA-seq-based analysis predicts: AEG-1 is a therapeutic target and immunotherapy biomarker for pan-cancer, including OSCC. Front Immunol 2024; 15:1484226. [PMID: 39483471 PMCID: PMC11524818 DOI: 10.3389/fimmu.2024.1484226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Background The aberrant expression of AEG-1 is significantly correlated with tumorigenesis, development, neurodegeneration and inflammation. However, the relationship between AEG-1 expression and immune infiltration in OSCC, as well as other tumor types, has yet to be comprehensively analyzed. Methods The expression levels, prognostic and clinicopathological characteristics, mutation patterns and methylation landscapes of AEG-1 in various tumors were obtained from multiple databases, including TIMER, GEPIA, HPA, TCGA, UALCAN, cBioPortal, SMART and TISIDB, in addition to single-cell RNA-seq data. The integration of these datasets facilitated the elucidation of the relationships among pan-cancer cellular heterogeneity, immune infiltration and AEG-1 expression levels. In vitro experiments created AEG-1 overexpressing cell lines, and mRNA-seq analyzed AEG-1-related differential genes in OSCC. RT-PCR validated these findings in vivo using xenograft tumors. Tumor cell lines were developed to study AEG-1's effects through H&E, Masson, and PAS staining. Immunohistochemistry examined AEG-1-related gene expression patterns. Results Our analysis demonstrated that AEG-1 is highly expressed across various cancer types and is associated with tumor grade and patient prognosis. Additionally, AEG-1 amplification was observed in multiple cancers. Notably, we identified a significant elevation of AEG-1 expression in OSCC, which strongly correlated with patient prognosis and immune infiltration. Through mRNA-seq analysis of differentially expressed genes and immune-related gene sets, we identified a strong correlation between AEG-1 and immune infiltration markers such as LCP2, CD247, HLA-DPA1, HLA-DRA, HLA-DRB1, CIITA and CD74 in OSCC. Additionally, AEG-1 was found to regulate Th1/Th2 immune homeostasis, promote glycogen accumulation, and contribute to tumor fibrosis. Conclusion In conclusion, AEG-1 significantly correlates with prognosis and immune infiltration across various cancer types and holds potential as a novel prognostic immune biomarker for OSCC. This finding may facilitate the identification of patients who are most likely to benefit from adjuvant immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiumei Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Chen Y, Liu J, Qin H, Qin S, Huang X, Wei C, Hu X. Deciphering regulatory patterns in a mouse model of hyperoxia-induced acute lung injury. PeerJ 2024; 12:e18069. [PMID: 39346085 PMCID: PMC11439394 DOI: 10.7717/peerj.18069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Background Oxygen therapy plays a pivotal role in treating critically ill patients in the intensive care unit (ICU). However, excessive oxygen concentrations can precipitate hyperoxia, leading to damage in multiple organs, with a notable effect on the lungs. Hyperoxia condition may lead to hyperoxia-induced acute lung injury (HALI), deemed as a milder form of acute respiratory distress syndrome (ARDS). Given its clinical importance and practical implications, there is a compelling need to investigate the underlying pathogenesis and comprehensively understand the regulatory mechanisms implicated in the development of HALI. Results In this study, we conducted a mouse model with HALI and performed regulatory mechanism analysis using RNA-seq on both HALI and control group. Comprehensive analysis revealed 727 genes of significant differential expression, including 248 long non-coding RNAs (lncRNAs). Also, alternative splicing events were identified from sequencing results. Notably, we observed up-regulation or abnormal alternative splicing of genes associated with immune response and ferroptosis under hyperoxia conditions. Utilizing weighted gene co-expression network analysis (WGCNA), we ascertained that genes involved in immune response formed a distinct cluster, showcasing an up-regulated pattern in hyperoxia, consistent with previous studies. Furthermore, a competing endogenous RNA (ceRNA) network was constructed, including 78 differentially expressed mRNAs and six differentially expressed lncRNAs, including H19. These findings uncover the intricate interplay of multiple transcriptional regulatory mechanisms specifically tailored to the pulmonary defense against HALI, substantiating the importance of these non-coding RNAs in this disease context. Conclusions Our results provide new insights into the potential mechanisms and underlying pathogenesis in the development of HALI at the post-transcriptional level. The findings of this study reveal potential regulatory interactions and biological roles of specific lncRNAs and genes, such as H19 and Sox9, encompassing driven gene expression patterns, alternative splicing events, and lncRNA-miRNA-mRNA ceRNA networks. These findings may pave the way for advancing therapeutic strategies and reducing the risk associated with oxygen treatment for patients.
Collapse
Affiliation(s)
- Yundi Chen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinwen Liu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Qin
- Department of Respiratory and Critical Care Medicine, Kweichow Moutai Hospital, Zunyi, Guizhou, China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinyang Huang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Wei
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaolin Hu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Kalinina E. Glutathione-Dependent Pathways in Cancer Cells. Int J Mol Sci 2024; 25:8423. [PMID: 39125992 PMCID: PMC11312684 DOI: 10.3390/ijms25158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
7
|
Huang Z, Liang F, Wu J, Huang Z, Li Y, Huang X, Liu Z. Implications of GCLC in prognosis and immunity of lung adenocarcinoma and multi-omics regulation mechanisms. BMC Pulm Med 2024; 24:239. [PMID: 38750474 PMCID: PMC11095029 DOI: 10.1186/s12890-024-03052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Ferroptosis is an iron-dependent type of regulated cell death, and has been implicated in lung adenocarcinoma (LUAD). Evidence has proved the key role of glutamate-cysteine ligase catalytic subunit (GCLC) in ferroptosis, but its role in LUAD remains unclear. Herein, we explored the implications of GCLC and relevant genes in LUAD prognosis and immunity as well as underlying molecular mechanisms. METHODS This work gathered mRNA, miRNA, DNA methylation, somatic mutation and copy-number variation data from TCGA-LUAD. WGCNA was utilized for selecting GCLC-relevant genes, and a GCLC-relevant prognostic signature was built by uni- and multivariate-cox regression analyses. Immune compositions were estimated via CIBERSORT, and two immunotherapy cohorts of solid tumors were analyzed. Multi-omics regulatory mechanisms were finally assessed. RESULTS Our results showed that GCLC was overexpressed in LUAD, and potentially resulted in undesirable survival. A prognostic model was generated, which owned accurate and independent performance in prognostication. GCLC, and relevant genes were notably connected with immune compositions and immune checkpoints. High GCLC expression was linked with better responses to anti-PD-L1 and anti-CTLA-4 treatment. Their possible DNA methylation sites were inferred, e.g., hypomethylation in cg19740353 might contribute to GCLC up-regulation. Frequent genetic mutations also affected their expression. Upstream transcription factors (E2F1/3/4, etc.), post-transcriptional regulation of miRNAs (hsa-mir-30c-1, etc.), lncRNAs (C8orf34-AS1, etc.), and IGF2BP1-mediated m6A modification were identified. It was also found NOP58-mediated SUMOylation post-translational modification. CONCLUSIONS Together, we show that GCLC and relevant genes exert crucial roles in LUAD prognosis and immunity, and their expression can be controlled by complex multi-omics mechanisms.
Collapse
Affiliation(s)
- Zhong Huang
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Feifei Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jiangtao Wu
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Zichong Huang
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Yinglian Li
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Xiaoyuan Huang
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China
| | - Zhenyu Liu
- Department of Oncology, KaiYuan Langdong Hospital of Guangxi Medical University, Nanning, Guangxi, 530028, China.
| |
Collapse
|
8
|
Xiao Y, Liu C, Fu Y, Zhong G, Guan X, Li W, Wang C, Hong S, Fu M, Zhou Y, You Y, Wu T, Zhang X, He M, Li Y, Guo H. Mediation of association between benzo[a]pyrene exposure and lung cancer risk by plasma microRNAs: A Chinese case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115980. [PMID: 38262095 DOI: 10.1016/j.ecoenv.2024.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Epidemiologic studies have reported the positive relationship of benzo[a]pyrene (BaP) exposure with the risk of lung cancer. However, the mechanisms underlying the relationship is still unclear. Plasma microRNA (miRNA) is a typical epigenetic biomarker that was linked to environment exposure and lung cancer development. We aimed to reveal the mediation effect of plasma miRNAs on BaP-related lung cancer. We designed a lung cancer case-control study including 136 lung cancer patients and 136 controls, and measured the adducts of benzo[a]pyrene diol epoxide-albumin (BPDE-Alb) and sequenced miRNA profiles in plasma. The relationships between BPDE-Alb adducts, normalized miRNA levels and the risk of lung cancer were assessed by linear regression models. The mediation effects of miRNAs on BaP-related lung cancer were investigated. A total of 190 plasma miRNAs were significantly related to lung cancer status at Bonferroni adjusted P < 0.05, among which 57 miRNAs showed different levels with |fold change| > 2 between plasma samples before and after tumor resection surgery at Bonferroni adjusted P < 0.05. Especially, among the 57 lung cancer-associated miRNAs, BPDE-Alb adducts were significantly related to miR-17-3p, miR-20a-3p, miR-135a-5p, miR-374a-5p, miR-374b-5p, miR-423-5p and miR-664a-5p, which could in turn mediate a separate 42.2%, 33.0%, 57.5%, 36.4%, 48.8%, 32.5% and 38.2% of the relationship of BPDE-Alb adducts with the risk of lung cancer. Our results provide non-invasion biomarker candidates for lung cancer, and highlight miRNAs dysregulation as a potential intermediate mechanism by which BaP exposure lead to lung tumorigenesis.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangkai Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Li Y, Ma S, Wang Z, Shi M, Zeng R, Yao Y. Gclc as a Marker for Injured Distal Nephron in Ischemia-Reperfusion Induced Acute Kidney Injury. J Inflamm Res 2024; 17:527-540. [PMID: 38313210 PMCID: PMC10838515 DOI: 10.2147/jir.s451402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Purpose The distal nephron of kidney plays a pivotal role in advancing acute kidney injury (AKI). Understanding the role of distal nephrons in AKI and identifying markers of injured distal nephrons are critical to comprehending the mechanism of renal injury and identifying novel therapeutic targets. Methods We analyzed single-cell RNA sequencing (scRNA-seq) data from mice with AKI induced by ischemia-reperfusion (IR), unilateral ureteral obstruction (UUO), cisplatin (CP), sodium oxalate (SO) and lipopolysaccharide (LPS). Additionally, we analyzed renal transcriptomics samples for AKI. Subsequently, we validated the effectiveness of targeting the biomarker Gclc in vitro and in vivo through metabolomics and immunofluorescence. Results The LOH-Inj and DCT-Inj subtypes were identified through scRNA-seq. Compared to normal distal nephrons, the injured distal nephrons exhibited higher levels of ferroptosis, pro-inflammation, and fibrosis. The expression of ferroptosis-related gene Gclc were high in various AKI models. Furthermore, Gclc was exclusively expressed in the distal nephron and upregulated in the injury subtype. To confirm our findings, we suppressed GCLC expression in the kidneys, resulting to aggravated IR-induced AKI. Inhibition of Gclc promoted damage to primarily renal tubular epithelial cells by promoting inflammatory infiltration, inhibiting glutathione metabolism and exacerbating oxidative stress. Conclusion Our research findings suggest that Gclc is a potential marker for injured distal nephron.
Collapse
Affiliation(s)
- Yinzheng Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shulin Ma
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zheng Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mengxia Shi
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, People's Republic of China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, People's Republic of China
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
10
|
Xu C, Bian Z, Wang X, Niu N, Liu L, Xiao Y, Zhu J, Huang N, Zhang Y, Chen Y, Wu Q, Sun F, Zhu X, Pan Q. SNORA56-mediated pseudouridylation of 28 S rRNA inhibits ferroptosis and promotes colorectal cancer proliferation by enhancing GCLC translation. J Exp Clin Cancer Res 2023; 42:331. [PMID: 38049865 PMCID: PMC10696674 DOI: 10.1186/s13046-023-02906-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies and is characterized by reprogrammed metabolism. Ferroptosis, a programmed cell death dependent on iron, has emerged as a promising strategy for CRC treatment. Although small nucleolar RNAs are extensively involved in carcinogenesis, it is unclear if they regulate ferroptosis during CRC pathogenesis. METHODS The dysregulated snoRNAs were identified using published sequencing data of CRC tissues. The expression of the candidate snoRNAs, host gene and target gene were assessed by real-time quantitative PCR (RT-qPCR), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and western blots. The biological function of critical molecules was investigated using in vitro and in vivo strategies including Cell Counting Kit-8 (CCK8), colony formation assay, flow cytometry, Fe2+/Fe3+, GSH/GSSG and the xenograft mice models. The ribosomal activities were determined by polysome profiling and O-propargyl-puromycin (OP-Puro) assay. The proteomics was conducted to clarify the downstream targets and the underlying mechanisms were validated by IHC, Pearson correlation analysis, protein stability and rescue assays. The clinical significance of the snoRNA was explored using the Cox proportional hazard model, receiver operating characteristic (ROC) and survival analysis. RESULTS Here, we investigated the SNORA56, which was elevated in CRC tissues and plasma, and correlated with CRC prognosis. SNORA56 deficiency in CRC impaired proliferation and triggered ferroptosis, resulting in reduced tumorigenesis. Mechanistically, SNORA56 mediated the pseudouridylation of 28 S rRNA at the U1664 site and promoted the translation of the catalytic subunit of glutamate cysteine ligase (GCLC), an indispensable rate-limiting enzyme in the biosynthesis of glutathione, which can inhibit ferroptosis by suppressing lipid peroxidation. CONCLUSIONS Therefore, the SNORA56/28S rRNA/GCLC axis stimulates CRC progression by inhibiting the accumulation of cellular peroxides, and it may provide biomarker and therapeutic applications in CRC.
Collapse
Affiliation(s)
- Chang Xu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Zhixuan Bian
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, 572000, China
| | - Xinyue Wang
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Na Niu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Li Liu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
| | - Yixuan Xiao
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
| | - Jiabei Zhu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China
| | - Nan Huang
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yue Zhang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Yan Chen
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Qi Wu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Fenyong Sun
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| | - Xiaoli Zhu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China.
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Paediatrics, Shanghai, 200127, China.
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, 572000, China.
| |
Collapse
|
11
|
Xu G, Wang J, Zhang Y, Chen Z, Deng R. GGT1 Suppresses the Development of Ferroptosis and Autophagy in Mouse Retinal Ganglion Cell Through Targeting GCLC. Eye Brain 2023; 15:139-151. [PMID: 38020723 PMCID: PMC10676118 DOI: 10.2147/eb.s434280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background Glaucoma is a neurodegenerative disorder characterized with optic nerve injury and the loss of retinal ganglion cells (RGCs). Ferroptosis has been proved to be associated with the degradation of RGCs. The aim of this study is to elucidate the relationship between ferroptosis and glaucoma pathogenesis, and unveil the underlying mechanism. Methods Methyl thiazolyl tetrazolium (MTT) assay was used to evaluate the proliferation of RGCs. The accumulation of cellular iron was measured by Iron assay kit, and the level of reactive oxygen species (ROS) was detected by fluorescence probe. The mitochondrial morphology and autophagosomes were analysed by using transmission electron microscopy (TEM). The contents of glutathione (GSH) and malondialdehyde (MDA) were tested by a GSH assay kit and an MDA detection kit, respectively. The expression of autophagy-related proteins was detected by Western blotting. Results A serious cell damage, aberrant iron homeostasis, and oxidative stress was shown in RGC-5 after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and gamma-Glutamyl transpeptidase 1 (GGT1) knockdown, but these effects were significantly alleviated by overexpression of GGT1 or ferroptosis inhibitors. The TEM and immunofluorescent results indicated that mitochondria impairment and autophagosome accumulation in OGD/R-treated cells was improved after GGT1 overexpression, while the phenomenon in GGT1-silenced cells was aggravated. Furthermore, we found that GGT1 can interact with glutamate cysteine ligase catalytic subunit (GCLC) to inhibit autophagy and ferroptosis in RGC-5 cells. Conclusion GGT1 represses autophagy in RGC-5 cells by targeting GCLC, which further restrains the development of ferroptosis in cells.
Collapse
Affiliation(s)
- Guihua Xu
- Eye Department, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People’s Republic of China
| | - Juanjuan Wang
- Eye Department, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People’s Republic of China
| | - Yiting Zhang
- Eye Department, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People’s Republic of China
| | - Zilin Chen
- Eye Department, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People’s Republic of China
| | - Ruidong Deng
- Eye Department, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People’s Republic of China
| |
Collapse
|
12
|
Wang T, Jiang X, Lu Y, Ruan Y, Wang J. Identification and integration analysis of a novel prognostic signature associated with cuproptosis-related ferroptosis genes and relevant lncRNA regulatory axis in lung adenocarcinoma. Aging (Albany NY) 2023; 15:1543-1563. [PMID: 36881404 PMCID: PMC10042693 DOI: 10.18632/aging.204561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Lung adenocarcinoma (LUAD) is a highly prevalent malignancy worldwide, and its clinical prognosis assessment and treatment is a major research direction. Both ferroptosis and cuproptosis are novel forms of cell death and are considered to be important factors involved in cancer progression. To further understand the correlation between the cuproptosis-related ferroptosis genes (CRFGs) and the prognosis of LUAD, we explore the molecular mechanisms related to the development of the disease. We constructed a prognostic signature containing 13 CRFGs, which, after grouping based on risk score, revealed that the LUAD high-risk group exhibited poor prognosis. Nomogram confirmed that it could be an independent risk factor for LUAD, and ROC curves and DCA validated the validity of the model. Further analysis showed that the three prognostic biomarkers (LIFR, CAV1, TFAP2A) were significantly correlated with immunization. Meanwhile, we found that a LINC00324/miR-200c-3p/TFAP2A regulatory axis could be involved in the progression of LUAD. In conclusion, our report reveals that CRFGs are well correlated with LUAD and provide new ideas for the construction of clinical prognostic tools, immunotherapy, and targeted therapy for LUAD.
Collapse
Affiliation(s)
- Tianyue Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyu Jiang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yanmin Ruan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiamin Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|