1
|
Choi Y, Park JH, Jo A, Lim CW, Park JM, Hwang JW, Lee KS, Kim YS, Lee H, Moon J. Blood-derived APLP1 + extracellular vesicles are potential biomarkers for the early diagnosis of brain diseases. SCIENCE ADVANCES 2025; 11:eado6894. [PMID: 39742488 DOI: 10.1126/sciadv.ado6894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
The early detection of neurodegenerative diseases necessitates the identification of specific brain-derived biomolecules in peripheral blood. In this context, our investigation delineates the role of amyloid precursor-like protein 1 (APLP1)-a protein predominantly localized in oligodendrocytes and neurons-as a previously unidentified biomarker in extracellular vesicles (EVs). Through rigorous analysis, APLP1+ EVs from human sera were unequivocally determined to be of cerebral origin. This assertion was corroborated by distinctive small RNA expression patterns of APLP1+ EVs. The miRNAs' putative targets within these EVs manifested pronounced expression in the brain, fortifying their neurospecific provenance. We subjected our findings to stringent validation using Thy-1 GFP M line mice, transgenic models wherein GFP expression is confined to hippocampal neurons. An amalgamation of these results with an exhaustive data analysis accentuates the potential of APLP1+ EVs as cerebrally originated biomarkers. Synthesizing our findings, APLP1+ EVs are postulated not merely as diagnostic markers but as seminal entities shaping the future trajectory of neurodegenerative disease diagnostics.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jae Hyun Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ala Jo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chul-Woo Lim
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jin Woo Hwang
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
2
|
Al-Attabi A, Mukhlif BA, Al-Shami KR, Merza MS, Alkubaisy SA, Abdulhadi MA. Evaluation of the effect of taurine on the matrix metalloproteinase-9 and the expression changes of miRNA-21 and miRNA-146a in SH-SY5Y cell line. Horm Mol Biol Clin Investig 2024; 45:165-170. [PMID: 39277808 DOI: 10.1515/hmbci-2024-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVES Alzheimer's disease (AD), a brain disorder, is the leading cause of dementia among older adults. Taurine, an amino acid abundantly present in the brain, and shows potential neuroprotective properties. Therefore, we investigated the effects of taurine on Matrix Metalloproteinase-9 (MMP-9) levels and the expression changes of miRNA-21 and miRNA-146a in the SH-SY5Y cell line. METHODS Taurine's impact on the SH-SY5Y cell line was evaluated via the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. MMP-9 levels were measured using an enzyme-linked immunosorbent assay (ELISA) kit, while the expression of miRNA-21 and miRNA-146a genes was assessed through Real-Time PCR analysis. RESULTS The MTT assay revealed no toxic effects on SH-SY5Y cells with increasing concentrations of taurine. Analysis of gene expression indicated a rise in miRNA-21 expression and a decline in miRNA-146 expression with increasing taurine concentration, with the most notable change observed at 1 mg/mL taurine (p<0.001). ELISA results demonstrated a significant increase in MMP-9 levels in the SH-SY5Y cell line treated with 1 mg/mL taurine compared to the untreated group (p<0.001). CONCLUSIONS Our study revealed that taurine can alter the expression of miRNA-146a and miRNA-21. In conclusion, taurine therapy presents promising therapeutic avenues for treating AD or mitigating severe symptoms. Nonetheless, further research is necessary to comprehensively grasp the precise mechanisms at play.
Collapse
Affiliation(s)
| | - Bilal Abdulmajeed Mukhlif
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Al Anbar, Iraq
| | - Karrar R Al-Shami
- Department of Forensic Sciences, College of Science, National University of Science and Technology, Dhi Qar, Iraq
| | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal, University College, Hillah, Babylon, Iraq
| | | | - Mohanad Ali Abdulhadi
- Department of Biochemistry, College of Medicine, University of Anbar, Ramadi City, Al-Anbar Governorate, Iraq
| |
Collapse
|
3
|
Hawley ZCE, Pardo ID, Cao S, Zavodszky MI, Casey F, Ferber K, Luo Y, Hana S, Chen SK, Doherty J, Costa R, Cullen P, Liu Y, Carlile TM, Chowdhury T, Doyle B, Clarner P, Mangaudis K, Guilmette E, Bourque S, Koske D, Nadella MVP, Trapa P, Hawes ML, Raitcheva D, Lo SC. Dorsal root ganglion toxicity after AAV intra-CSF delivery of a RNAi expression construct into non-human primates and mice. Mol Ther 2024:S1525-0016(24)00756-1. [PMID: 39563026 DOI: 10.1016/j.ymthe.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/24/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Dorsal root ganglion (DRG) toxicity has been consistently reported as a potential safety concern after delivery of adeno-associated viruses (AAVs) containing gene-replacement vectors but has yet to be reported for RNAi-based vectors. Here, we report DRG toxicity after AAV intra-CSF delivery of an RNAi expression construct-artificial microRNA targeting superoxide dismutase 1 (SOD1)-in non-human primates (NHPs) and provide evidence that this can be recapitulated within mice. Histopathology evaluation showed that NHPs and mice develop DRG toxicity after AAV delivery, including DRG neuron degeneration and necrosis and nerve-fiber degeneration that were associated with increases in cerebrospinal fluid (CSF) and serum phosphorylated neurofilament heavy chain (pNF-H). RNA-sequencing analysis of DRGs showed that dysregulated pathways were preserved between NHPs and mice, including increases in innate/adaptive immune responses and decreases in mitochondrial- and neuronal-related genes, following AAV treatment. Finally, endogenous miR-21-5p was upregulated in DRGs of AAV-treated NHPs and mice. Increases in miR-21-5p were also identified within the CSF of NHPs, which significantly correlated with pNF-H, implicating miR-21-5p as a potential biomarker of DRG toxicity in conjunction with other molecular analytes. This work highlights the importance of assessing safety concerns related to DRG toxicity when developing RNAi-based AAV vectors for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Luo
- Biogen, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
5
|
Ianni M, Corraliza-Gomez M, Costa-Coelho T, Ferreira-Manso M, Inteiro-Oliveira S, Alemãn-Serrano N, Sebastião AM, Garcia G, Diógenes MJ, Brites D. Spatiotemporal Dysregulation of Neuron-Glia Related Genes and Pro-/Anti-Inflammatory miRNAs in the 5xFAD Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:9475. [PMID: 39273422 PMCID: PMC11394861 DOI: 10.3390/ijms25179475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is a multifactorial disease influenced by aging, genetics, and environmental factors. miRNAs are crucial regulators of gene expression and play significant roles in AD onset and progression. This exploratory study analyzed the expression levels of 28 genes and 5 miRNAs (miR-124-3p, miR-125b-5p, miR-21-5p, miR-146a-5p, and miR-155-5p) related to AD pathology and neuroimmune responses using RT-qPCR. Analyses were conducted in the prefrontal cortex (PFC) and the hippocampus (HPC) of the 5xFAD mouse AD model at 6 and 9 months old. Data highlighted upregulated genes encoding for glial fibrillary acidic protein (Gfap), triggering receptor expressed on myeloid cells (Trem2) and cystatin F (Cst7), in the 5xFAD mice at both regions and ages highlighting their roles as critical disease players and potential biomarkers. Overexpression of genes encoding for CCAAT enhancer-binding protein alpha (Cebpa) and myelin proteolipid protein (Plp) in the PFC, as well as for BCL2 apoptosis regulator (Bcl2) and purinergic receptor P2Y12 (P2yr12) in the HPC, together with upregulated microRNA(miR)-146a-5p in the PFC, prevailed in 9-month-old animals. miR-155 positively correlated with miR-146a and miR-21 in the PFC, and miR-125b positively correlated with miR-155, miR-21, while miR-146a in the HPC. Correlations between genes and miRNAs were dynamic, varying by genotype, region, and age, suggesting an intricate, disease-modulated interaction between miRNAs and target pathways. These findings contribute to our understanding of miRNAs as therapeutic targets for AD, given their multifaceted effects on neurons and glial cells.
Collapse
Affiliation(s)
- Marta Ianni
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Miriam Corraliza-Gomez
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cadiz (INIBICA), 11003 Cadiz, Spain
| | - Tiago Costa-Coelho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mafalda Ferreira-Manso
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Inteiro-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno Alemãn-Serrano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- ULS Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Gonçalo Garcia
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Dora Brites
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
6
|
McInvale JJ, Canoll P, Hargus G. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in Alzheimer's disease and frontotemporal dementia. Brain Pathol 2024; 34:e13231. [PMID: 38246596 PMCID: PMC11189780 DOI: 10.1111/bpa.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative diseases are increasing in prevalence and comprise a large socioeconomic burden on patients and their caretakers. The need for effective therapies and avenues for disease prevention and monitoring is of paramount importance. Fluid biomarkers for neurodegenerative diseases have gained a variety of uses, including informing participant selection for clinical trials, lending confidence to clinical diagnosis and disease staging, determining prognosis, and monitoring therapeutic response. Their role is expected to grow as disease-modifying therapies start to be available to a broader range of patients and as prevention strategies become established. Many of the underlying molecular mechanisms of currently used biomarkers are incompletely understood. Animal models and in vitro systems using cell lines have been extensively employed but face important translatability limitations. Induced pluripotent stem cell (iPSC) technology, where a theoretically unlimited range of cell types can be reprogrammed from peripheral cells sampled from patients or healthy individuals, has gained prominence over the last decade. It is a promising avenue to study physiological and pathological biomarker function and response to experimental therapeutics. Such systems are amenable to high-throughput drug screening or multiomics readouts such as transcriptomics, lipidomics, and proteomics for biomarker discovery, investigation, and validation. The present review describes the current state of biomarkers in the clinical context of neurodegenerative diseases, with a focus on Alzheimer's disease and frontotemporal dementia. We include a discussion of how iPSC models have been used to investigate and test biomarkers such as amyloid-β, phosphorylated tau, neurofilament light chain or complement proteins, and even nominate novel biomarkers. We discuss the limitations of current iPSC methods, mentioning alternatives such as coculture systems and three-dimensional organoids which address some of these concerns. Finally, we propose exciting prospects for stem cell transplantation paradigms using animal models as a preclinical tool to study biomarkers in the in vivo context.
Collapse
Affiliation(s)
- Julie J. McInvale
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
- Medical Scientist Training Program, Columbia UniversityNew YorkNew YorkUSA
| | - Peter Canoll
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Gunnar Hargus
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
7
|
Almohaimeed HM, Almars AI, Alsulaimani F, Basri AM, Althobaiti NA, Albalaw AE, Alsharif I, Al Abdulmonem W, Hershan AA, Soliman MH. Investigating the potential neuroprotective benefits of taurine and Dihydrotestosterone and Hydroxyprogesterone levels in SH-SY5Y cells. Front Aging Neurosci 2024; 16:1379431. [PMID: 38867846 PMCID: PMC11168113 DOI: 10.3389/fnagi.2024.1379431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
Background Taurine, an amino acid abundantly found in the brain and other tissues, has potential neuroprotective properties. Alzheimer's disease (AD) is a commonly occurring type of dementia, which becomes more prevalent as people age. This experiment aimed to assess the neuroprotective effects of taurine on SH-SY5Y cells by examining its impact on Dihydrotestosterone (DHT), Dihydroprogesterone (DHP), as well as the expression of miRNA-21 and miRNA-181. Methods The effects of various taurine concentrations (0.25, and 0.75 mg/mL), and LPS (0.1, and 12 mg/mL) on the SH-SY5Y cell line were assessed using the MTT assay. The levels of DHT and DHP were quantified using an ELISA kit. Additionally, the expression levels of miRNA-181 and miRNA-21 genes were examined through Real-Time PCR analysis. Results The results of the MTT assay showed that treatment with taurine at concentrations of 0.25, and 0.75 mg/mL reduces the toxicity of LPS in SH-SY5Y cells. ELISA results indicated that taurine at a concentration of 0.25, and 0.75 mg/mL significantly elevated DHT and DHP hormones in the SH-SY5Y cell line compared to the untreated group (p < 0.01). The expression levels of IL-1β and IL-6 were decreased under the influence of LPS in SH-SY5Y cells after taurine treatment (p < 0.01). Gene expression analysis revealed that increasing taurine concentration resulted in heightened expression of miRNA-181 and miRNA-21, with the most significant increase observed at a concentration of 0.75 mg/mL (p < 0.001). Conclusion Our study findings revealed that the expression of miRNA-181 and miRNA-21 can be enhanced by taurine. Consequently, exploring the targeting of taurine, miRNA-181, and miRNA-21 or considering hormone therapy may offer potential therapeutic approaches for treating AD or alleviating severe symptoms. Nonetheless, in order to fully comprehend the precise mechanisms involved, additional research is required.
Collapse
Affiliation(s)
- Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany I. Almars
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fayez Alsulaimani
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Basri
- Department of Medial Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah A. Althobaiti
- Biology Department, College of Science and Humanities Al Quwaiiyah, Shaqra University, Al Quwaiiyah, Saudi Arabia
| | - Aishah E. Albalaw
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Almonther Abdullah Hershan
- Department of Medical Microbiology and Parasitology, College of Medicine, The University of Jeddah, Jeddah, Saudi Arabia
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
8
|
Liu Y, Meng XK, Shao WZ, Liu YQ, Tang C, Deng SS, Tang CF, Zheng L, Guo W. miR-34a/TAN1/CREB Axis Engages in Alleviating Oligodendrocyte Trophic Factor-Induced Myelin Repair Function and Astrocyte-Dependent Neuroinflammation in the Early Stages of Alzheimer's Disease: The Anti-Neurodegenerative Effect of Treadmill Exercise. Neurochem Res 2024; 49:1105-1120. [PMID: 38289520 DOI: 10.1007/s11064-024-04108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Reduced myelin stability observed in the early stages of Alzheimer's disease leads to spatial learning and memory impairment. Exercise has been shown to protect nerves, reduce the risk of Alzheimer's disease, and strengthen synaptic connectivity. However, the underlying mechanisms of how exercise can promote myelin repair and coordinate inflammation and proliferation are still uncertain. In this study, we conducted histological and biochemical assays of cortical lysates after behavioral testing to detect pathological changes, myelin sheath thickness, and mRNA and protein levels. It is notable that D-galactose model mice exhibited elevated miRNA-34a levels, overactive astrocytes, decreased myelin staining scores, increased apoptosis, and decreased synaptic plasticity in the brain. Significantly, after eight weeks of exercise, we observed improvements in LFB scores, NeuN( +) neuron counts, and myelin basic protein (MBP) expression. Additionally, exercise promoted the expression of oligodendrocyte markers Olig2 and PDFGR-α associated with brain proliferation, and improved spatial cognitive function. Furthermore, it decreased the inflammation caused by astrocyte secretions (TNF-α, Cox-2, CXCL2). Interestingly, we also observed downregulation of miR-34a and activation of the TAN1/PI3K/CREB signaling pathway. Our data shed light on a previously unsuspected mechanism by which exercise reduces miR-34a levels and protects neuronal function and survival by preventing excessive demyelination and inflammatory infiltration in the CNS.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Xiao-Kang Meng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Wen-Zhen Shao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Ya-Qun Liu
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266071, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Si-Si Deng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Chang-Fa Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
- Hunan Province Sports Public Service Research Base, Hunan Normal University, Changsha, 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China
| | - Wen Guo
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, 529 LuShanNan Road, Changsha, 410012, China.
| |
Collapse
|
9
|
García-Cerro S, Gómez-Garrido A, Garcia G, Crespo-Facorro B, Brites D. Exploratory Analysis of MicroRNA Alterations in a Neurodevelopmental Mouse Model for Autism Spectrum Disorder and Schizophrenia. Int J Mol Sci 2024; 25:2786. [PMID: 38474035 DOI: 10.3390/ijms25052786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in the regulation of gene expression levels and have been implicated in the pathogenesis of autism spectrum disorder (ASD) and schizophrenia (SCZ). In this study, we examined the adult expression profiles of specific miRNAs in the prefrontal cortex (PFC) of a neurodevelopmental mouse model for ASD and SCZ that mimics perinatal pathology, such as NMDA receptor hypofunction, and exhibits behavioral and neurophysiological phenotypes related to these disorders during adulthood. To model the early neuropathogenesis of the disorders, mouse pups were administered subcutaneously with ketamine (30 mg/Kg) at postnatal days 7, 9, and 11. We focused on a set of miRNAs most frequently altered in ASD (miR-451a and miR-486-3p) and in SCZ (miR-132-3p and miR-137-3p) according to human studies. Additionally, we explored miRNAs whose alterations have been identified in both disorders (miR-21-5p, miR-92a-2-5p, miR-144-3p, and miR-146a-5p). We placed particular emphasis on studying the sexual dimorphism in the dynamics of these miRNAs. Our findings revealed significant alterations in the PFC of this ASD- and SCZ-like mouse model. Specifically, we observed upregulated miR-451a and downregulated miR-137-3p. Furthermore, we identified sexual dimorphism in the expression of miR-132-3p, miR-137-3p, and miR-92a-2-5p. From a translational perspective, our results emphasize the potential involvement of miR-92a-2-5p, miR-132-3p, miR-137-3p, and miR-451a in the pathophysiology of ASD and SCZ and strengthen their potential as biomarkers and therapeutic targets of such disorders.
Collapse
Affiliation(s)
- Susana García-Cerro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Ana Gómez-Garrido
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Benedicto Crespo-Facorro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
- Mental Health Unit, Virgen del Rocio University Hospital, Manuel Siurot AV, 41013 Seville, Spain
- Department of Psychiatry, Faculty of Medicine, University of Seville, Sánchez Pizjuán AV, 41013 Seville, Spain
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
10
|
Li H, Yuan Y, Xie Q, Dong Z. Exosomes: potential targets for the diagnosis and treatment of neuropsychiatric disorders. J Transl Med 2024; 22:115. [PMID: 38287384 PMCID: PMC10826005 DOI: 10.1186/s12967-024-04893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
The field of neuropsychiatry is considered a middle ground between neurological and psychiatric disorders, thereby bridging the conventional boundaries between matter and mind, consciousness, and function. Neuropsychiatry aims to evaluate and treat cognitive, behavioral, and emotional disorders in individuals with neurological conditions. However, the pathophysiology of these disorders is not yet fully understood, and objective biological indicators for these conditions are currently lacking. Treatment options are also limited due to the blood-brain barrier, which results in poor treatment effects. Additionally, many drugs, particularly antipsychotic drugs, have adverse reactions, which make them difficult to tolerate for patients. As a result, patients often abandon treatment owing to these adverse reactions. Since the discovery of exosomes in 1983, they have been extensively studied in various diseases owing to their potential as nanocellulators for information exchange between cells. Because exosomes can freely travel between the center and periphery, brain-derived exosomes can reflect the state of the brain, which has considerable advantages in diagnosis and treatment. In addition, administration of engineered exosomes can improve therapeutic efficacy, allow lesion targeting, ensure drug stability, and prevent systemic adverse effects. Therefore, this article reviews the source and biological function of exosomes, relationship between exosomes and the blood-brain barrier, relationship between exosomes and the pathological mechanism of neuropsychiatric disorders, exosomes in the diagnosis and treatment of neuropsychiatric disorders, and application of engineered exosomes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Haorao Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zaiquan Dong
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
11
|
Rochín-Hernández LJ, Rochín-Hernández LS, Padilla-Cristerna ML, Duarte-García A, Jiménez-Acosta MA, Figueroa-Corona MP, Meraz-Ríos MA. Mesenchymal Stem Cells from Familial Alzheimer's Patients Express MicroRNA Differently. Int J Mol Sci 2024; 25:1580. [PMID: 38338859 PMCID: PMC10855944 DOI: 10.3390/ijms25031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the predominant form of dementia globally. No reliable diagnostic, predictive techniques, or curative interventions are available. MicroRNAs (miRNAs) are vital to controlling gene expression, making them valuable biomarkers for diagnosis and prognosis. This study examines the transcriptome of olfactory ecto-mesenchymal stem cells (MSCs) derived from individuals with the PSEN1(A431E) mutation (Jalisco mutation). The aim is to determine whether this mutation affects the transcriptome and expression profile of miRNAs and their target genes at different stages of asymptomatic, presymptomatic, and symptomatic conditions. Expression microarrays compare the MSCs from mutation carriers with those from healthy donors. The results indicate a distinct variation in the expression of miRNAs and mRNAs among different symptomatologic groups and between individuals with the mutation. Using bioinformatics tools allows us to identify target genes for miRNAs, which in turn affect various biological processes and pathways. These include the cell cycle, senescence, transcription, and pathways involved in regulating the pluripotency of stem cells. These processes are closely linked to inter- and intracellular communication, vital for cellular functioning. These findings can enhance our comprehension and monitoring of the disease's physiological processes, identify new disorder indicators, and develop innovative treatments and diagnostic tools for preventing or treating AD.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Lory S. Rochín-Hernández
- Departamento de Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico;
| | - Mayte L. Padilla-Cristerna
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Andrea Duarte-García
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - María P. Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| |
Collapse
|
12
|
Wu P, He B, Li X, Zhang H. Roles of microRNA-124 in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2023; 17:1298508. [PMID: 38034588 PMCID: PMC10687822 DOI: 10.3389/fncel.2023.1298508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a prominent global cause of mortality due to the limited availability of effective prevention and treatment strategies for this disorder. An effective molecular biomarker may contribute to determining the prognosis and promoting the therapeutic efficiency of TBI. MicroRNA-124 (miR-124) is most abundantly expressed in the brain and exerts different biological effects in a variety of diseases by regulating pathological processes of apoptosis and proliferation. Recently, increasing evidence has demonstrated the association between miR-124 and TBI, but there is still a lack of relevant literature to summarize the current evidence on this topic. Based on this review, we found that miR-124 was involved as a regulatory factor in cell apoptosis and proliferation, and was also strongly related with the pathophysiological development of TBI. MiR-124 played an essential role in TBI by interacting with multiple biomolecules and signaling pathways, such as JNK, VAMP-3, Rela/ApoE, PDE4B/mTOR, MDK/TLR4/NF-κB, DAPK1/NR2B, JAK/STAT3, PI3K/AKT, Ras/MEK/Erk. The potential benefits of upregulating miR-124 in facilitating TBI recovery have been identified. The advancement of miRNA nanocarrier system technology presents an opportunity for miR-124 to emerge as a novel therapeutic target for TBI. However, the specific mechanisms underlying the role of miR-124 in TBI necessitate further investigation. Additionally, comprehensive large-scale studies are required to evaluate the clinical significance of miR-124 as a therapeutic target for TBI.
Collapse
Affiliation(s)
- Panxing Wu
- Department of Neurosurgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Bao He
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Xiaoliang Li
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
- Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Suzhou, Jiangsu, China
| | - Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
13
|
Tregub PP, Ibrahimli I, Averchuk AS, Salmina AB, Litvitskiy PF, Manasova ZS, Popova IA. The Role of microRNAs in Epigenetic Regulation of Signaling Pathways in Neurological Pathologies. Int J Mol Sci 2023; 24:12899. [PMID: 37629078 PMCID: PMC10454825 DOI: 10.3390/ijms241612899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In recent times, there has been a significant increase in researchers' interest in the functions of microRNAs and the role of these molecules in the pathogenesis of many multifactorial diseases. This is related to the diagnostic and prognostic potential of microRNA expression levels as well as the prospects of using it in personalized targeted therapy. This review of the literature analyzes existing scientific data on the involvement of microRNAs in the molecular and cellular mechanisms underlying the development of pathologies such as Alzheimer's disease, cerebral ischemia and reperfusion injury, and dysfunction of the blood-brain barrier.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alla B. Salmina
- Research Center of Neurology, 125367 Moscow, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
14
|
Huang B, Chen K, Li Y. Aerobic exercise, an effective prevention and treatment for mild cognitive impairment. Front Aging Neurosci 2023; 15:1194559. [PMID: 37614470 PMCID: PMC10442561 DOI: 10.3389/fnagi.2023.1194559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Aerobic exercise has emerged as a promising intervention for mild cognitive impairment (MCI), a precursor to dementia. The therapeutic benefits of aerobic exercise are multifaceted, encompassing both clinical and molecular domains. Clinically, aerobic exercise has been shown to mitigate hypertension and type 2 diabetes mellitus, conditions that significantly elevate the risk of MCI. Moreover, it stimulates the release of nitric oxide, enhancing arterial elasticity and reducing blood pressure. At a molecular level, it is hypothesized that aerobic exercise modulates the activation of microglia and astrocytes, cells crucial to brain inflammation and neurogenesis, respectively. It has also been suggested that aerobic exercise promotes the release of exercise factors such as irisin, cathepsin B, CLU, and GPLD1, which could enhance synaptic plasticity and neuroprotection. Consequently, regular aerobic exercise could potentially prevent or reduce the likelihood of MCI development in elderly individuals. These molecular mechanisms, however, are hypotheses that require further validation. The mechanisms of action are intricate, and further research is needed to elucidate the precise molecular underpinnings and to develop targeted therapeutics for MCI.
Collapse
Affiliation(s)
- Baiqing Huang
- Sports Institute, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Ying Li
- Sports Institute, Yunnan Minzu University, Kunming, China
| |
Collapse
|
15
|
Samarpita S, Li X. Leveraging Exosomes as the Next-Generation Bio-Shuttles: The Next Biggest Approach against Th17 Cell Catastrophe. Int J Mol Sci 2023; 24:ijms24087647. [PMID: 37108809 PMCID: PMC10142210 DOI: 10.3390/ijms24087647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the launch of clinical-grade exosomes is rising expeditiously, as they represent a new powerful approach for the delivery of advanced therapies and for diagnostic purposes for various diseases. Exosomes are membrane-bound extracellular vesicles that can act as biological messengers between cells, in the context of health and disease. In comparison to several lab-based drug carriers, exosome exhibits high stability, accommodates diverse cargo loads, elicits low immunogenicity and toxicity, and therefore manifests tremendous perspectives in the development of therapeutics. The efforts made to spur exosomes in drugging the untreatable targets are encouraging. Currently, T helper (Th) 17 cells are considered the most prominent factor in the establishment of autoimmunity and several genetic disorders. Current reports have indicated the importance of targeting the development of Th17 cells and the secretion of its paracrine molecule, interleukin (IL)-17. However, the present-day targeted approaches exhibit drawbacks, such as high cost of production, rapid transformation, poor bioavailability, and importantly, causing opportunistic infections that ultimately hamper their clinical applications. To overcome this hurdle, the potential use of exosomes as vectors seem to be a promising approach for Th17 cell-targeted therapies. With this standpoint, this review discusses this new concept by providing a snapshot of exosome biogenesis, summarizes the current clinical trials of exosomes in several diseases, analyzes the prospect of exosomes as an established drug carrier and delineates the present challenges, with an emphasis on their practical applications in targeting Th17 cells in diseases. We further decode the possible future scope of exosome bioengineering for targeted drug delivery against Th17 cells and its catastrophe.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Wang G, Shen X, Song X, Wang N, Wo X, Gao Y. Protective mechanism of gold nanoparticles on human neural stem cells injured by β-amyloid protein through miR-21-5p/SOCS6 pathway. Neurotoxicology 2023; 95:12-22. [PMID: 36623431 DOI: 10.1016/j.neuro.2022.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive memory loss in dementia. Gold nanoparticles (AuNPs) were reported beneficial for human neural stem cells (hNSCs) treated with Amyloid-beta (Aβ), but the neuroprotective mechanisms still are unknown. First, the hNSCs induced by Aβ to construct AD cell model in vitro and AuNPs was performed to assess the therapeutic effect of Aβ-targeted AD treatment. Then, we investigated the effects of AuNPs on hNSCs viability and proinflammatory factors (interleukin 6 and tumor necrosis factor-alpha) by Cell Counting Kit-8 (CCK-8) and enzyme-linked immunosorbent (ELISA). FACS was carried out to determinate Tuj-1 and glial fibrillary acidic protein (GFAP). Reactive oxygen species (ROS) generation and mitochondrial membrane potential was evaluated by ROS and JC-1 assay kit. In addition, miRNA array was used to systematically detect the differential miRNAs. Dual-luciferase reporter assay was applied to verify the targeting relationship between miR-21-5p and the suppressor of cytokine signalling 6(SOCS6). Quantitative PCR (qPCR) and Western blot assessments were also used to detect related gene expression intracellularly or in the supernatant. The results demonstrate that AuNPs co-treatment repressed the high expression of total tau (T-tau), phosphorylated tau (P-tau), and Aβ protein, and reduced apoptosis rate of hNSCs. Aβ-induced decreased mitochondrial membrane potential and mitochondria in the hNSCs were damaged, while AuNPs co-treatment showed a protective effect on mitochondrial membrane potential. Co-treatment with AuNPs significantly increased dynamin-related protein 1 (DRP1), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) mRNA levels. AuNPs may improve mitochondrial function impairment due to Aβ by elevating mitochondrial membrane potential, upregulating regulators of mitochondrial biogenesis, and inhibiting ROS production. hNSCs transfected with miR-21-5p inhibitor reversed AuNPs mediated cytoprotection induced by Aβ. AuNPs upregulation of miR-21-5p expression and exert a mitochondrial protective function. Overexpression of miR-21-5p contributes to enhancing the effect of cytoprotection of AuNPs. MiR-21-5p direct targeting SOCS6 and overexpression SOCS6 exerted opposite effects on hNSCs compared with miR-21-5p mimic group. In conclusion, AuNPs can protect hNSCs from Aβ injury and decrease mitochondrial damage by regulating the miR-21-5p/SOCS6 pathway.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China.
| | - Xiangpeng Shen
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| | - Xiangkong Song
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| | - Ningfen Wang
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| | - Xuewen Wo
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| | - Yonglei Gao
- Department of Internal Neurology, Bin Zhou People's Hospital, No.515, Huanghe Seven Road, Binzhou, Shandong Province 256610, PR China
| |
Collapse
|